Qwen 2.5 Coder 14B - llamafile
- Model creator: Qwen
- Original model: Qwen/Qwen2.5-Coder-14B-Instruct
Mozilla packaged the Qwen 2.5 Coder models into executable weights that we call llamafiles. This gives you the easiest fastest way to use the model on Linux, MacOS, Windows, FreeBSD, OpenBSD and NetBSD systems you control on both AMD64 and ARM64.
Software Last Updated: 2025-03-31
Llamafile Version: 0.9.2
Quickstart
To get started, you need both the Qwen 2.5 Coder weights, and the llamafile software. Both of them are included in a single file, which can be downloaded and run as follows:
wget https://huggingface.co/Mozilla/Qwen2.5-Coder-14B-Instruct-llamafile/resolve/main/Qwen2.5-Coder-14B-Instruct-Q6_K.llamafile
chmod +x Qwen2.5-Coder-14B-Instruct-Q6_K.llamafile
./Qwen2.5-Coder-14B-Instruct-Q6_K.llamafile
The default mode of operation for these llamafiles is our new command line chatbot interface.
Usage
You can use triple quotes to ask questions on multiple lines. You can
pass commands like /stats
and /context
to see runtime status
information. You can change the system prompt by passing the -p "new system prompt"
flag. You can press CTRL-C to interrupt the model.
Finally CTRL-D may be used to exit.
If you prefer to use a web GUI, then a --server
mode is provided, that
will open a tab with a chatbot and completion interface in your browser.
For additional help on how it may be used, pass the --help
flag. The
server also has an OpenAI API compatible completions endpoint that can
be accessed via Python using the openai
pip package.
./Qwen2.5-Coder-14B-Instruct-Q6_K.llamafile --server
An advanced CLI mode is provided that's useful for shell scripting. You
can use it by passing the --cli
flag. For additional help on how it
may be used, pass the --help
flag.
./Qwen2.5-Coder-14B-Instruct-Q6_K.llamafile --cli -p 'four score and seven' --log-disable
Troubleshooting
Having trouble? See the "Gotchas" section of the README.
On Linux, the way to avoid run-detector errors is to install the APE interpreter.
sudo wget -O /usr/bin/ape https://cosmo.zip/pub/cosmos/bin/ape-$(uname -m).elf
sudo chmod +x /usr/bin/ape
sudo sh -c "echo ':APE:M::MZqFpD::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register"
sudo sh -c "echo ':APE-jart:M::jartsr::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register"
On Windows there's a 4GB limit on executable sizes.
Context Window
This model has a max context window size of 128k tokens. By default, a
context window size of 8192 tokens is used. You can ask llamafile
to use the maximum context size by passing the -c 0
flag. That's big
enough for a small book. If you want to be able to have a conversation
with your book, you can use the -f book.txt
flag.
GPU Acceleration
On GPUs with sufficient RAM, the -ngl 999
flag may be passed to use
the system's NVIDIA or AMD GPU(s). On Windows, only the graphics card
driver needs to be installed if you own an NVIDIA GPU. On Windows, if
you have an AMD GPU, you should install the ROCm SDK v6.1 and then pass
the flags --recompile --gpu amd
the first time you run your llamafile.
On NVIDIA GPUs, by default, the prebuilt tinyBLAS library is used to
perform matrix multiplications. This is open source software, but it
doesn't go as fast as closed source cuBLAS. If you have the CUDA SDK
installed on your system, then you can pass the --recompile
flag to
build a GGML CUDA library just for your system that uses cuBLAS. This
ensures you get maximum performance.
For further information, please see the llamafile README.
About llamafile
llamafile is a new format introduced by Mozilla on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64.
Qwen2.5-Coder-14B-Instruct
Introduction
Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:
- Significantly improvements in code generation, code reasoning and code fixing. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o.
- A more comprehensive foundation for real-world applications such as Code Agents. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.
- Long-context Support up to 128K tokens.
This repo contains the instruction-tuned 14B Qwen2.5-Coder model, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 14.7B
- Number of Paramaters (Non-Embedding): 13.1B
- Number of Layers: 48
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 131,072 tokens
- Please refer to this section for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our blog, GitHub, Documentation, Arxiv.
Requirements
The code of Qwen2.5-Coder has been in the latest Hugging face transformers
and we advise you to use the latest version of transformers
.
With transformers<4.37.0
, you will encounter the following error:
KeyError: 'qwen2'
Quickstart
Here provides a code snippet with apply_chat_template
to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-Coder-14B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Processing Long Texts
The current config.json
is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize YaRN, a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to config.json
to enable YaRN:
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
For deployment, we recommend using vLLM.
Please refer to our Documentation for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, potentially impacting performance on shorter texts.
We advise adding the rope_scaling
configuration only when processing long contexts is required.
Evaluation & Performance
Detailed evaluation results are reported in this ๐ blog.
For requirements on GPU memory and the respective throughput, see results here.
Citation
If you find our work helpful, feel free to give us a cite.
@article{hui2024qwen2,
title={Qwen2. 5-Coder Technical Report},
author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
journal={arXiv preprint arXiv:2409.12186},
year={2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
- Downloads last month
- 42