π Model Card: [REARM]
"[Refining Contrastive Learning and Homography Relations for Multi-Modal Recommendation]",
Shouxing Ma, Yawen Zeng, Shiqing Wu, and Guandong Xu
Published in [ACM MM], 2025.
[Paper Link] [Code Repository]
β¨ Overview
We propose a novel multi-modal contrastive recommendation framework (REARM), which preserves recommendation-relevant modal-shared and valuable modal-unique information through meta-network and orthogonal constraint strategies, respectively.
We jointly incorporate co-occurrence and similarity graphs of users and items, allowing more effective capturing of the underlying structural patterns and semantic (interest) relationships, thereby enhancing recommendation performance.
Extensive experiments are conducted on three publicly available datasets to evaluate our proposed method. The experimental results show that our proposed framework outperforms several state-of-the-art recommendation baselines.
π§© Environment Requirement
The code has been tested running under Python 3.6. The required packages are as follows:
- pytorch == 1.13.0
- numpy == 1.24.4
- scipy == 1.10.1
Data
Full data could be downloaded from huggingfac:
Dataset
We provide three processed datasets: Baby, Sports, and Clothing.
#Dataset | #Interactions | #Users | #Items | Sparsity |
---|---|---|---|---|
Baby | 160,792 | 19,445 | 7,050 | 99.88% |
Sports | 296,337 | 35,598 | 18,357 | 99.96% |
Clothing | 278,677 | 39,387 | 23,033 | 99.97% |
π Example to Run the Codes
The instructions for the commands are clearly stated in the codes.
- Baby dataset
python main.py --dataset='baby' --num_layer=4 --reg_weight=0.0005 --rank=3 --s_drop=0.4 --m_drop=0.6 --u_mm_image_weight=0.2 --i_mm_image_weight=0 --uu_co_weight=0.4 --ii_co_weight=0.2 --user_knn_k=40 --item_knn_k=10 --n_ii_layers=1 --n_uu_layers=1 --cl_tmp=0.6 --cl_loss_weight=5e-6 --diff_loss_weight=5e-5
- Sports dataset
python main.py --dataset='sports' --num_layer=5 --reg_weight=0.05 --rank=7 --s_drop=1 --m_drop=0.2 --u_mm_image_weight=0 --i_mm_image_weight=0.2 --uu_co_weight=0.9 --ii_co_weight=0.2 --user_knn_k=25 --item_knn_k=5 --n_ii_layers=2 --n_uu_layers=2 --cl_tmp=1.5 --cl_loss_weight=1e-3 --diff_loss_weight=5e-4
- Clothing dataset
python main.py --dataset='clothing' --num_layer=4 --reg_weight=0.00001 --rank=3 --s_drop=0.4 --m_drop=0.1 --u_mm_image_weight=0.1 --i_mm_image_weight=0.1 --uu_co_weight=0.7 --ii_co_weight=0.1 --user_knn_k=45 --item_knn_k=10 --n_ii_layers=1 --n_uu_layers=1 --cl_tmp=0.03 --cl_loss_weight=1e-6 --diff_loss_weight=1e-5
REARM
The released code consists of the following files.
--data
--baby
--clothing
--sports
--utils
--configurator
--data_loader
--evaluator
--helper
--logger
--metrics
--parser
--main
--model
--trainer
Citation
If you want to use our codes and datasets in your research, please cite:
@inproceedings{REARM,
title = {Refining Contrastive Learning and Homography Relations for Multi-Modal Recommendation,
author = {Ma, Shouxing and
Zeng, Yawen and
Wu, Shiqing and
Xu, Guandong},
booktitle = {Proceedings of the 33th ACM International Conference on Multimedia},
year = {2025}
}