|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- mteb |
|
model-index: |
|
- name: SGPT-5.8B-weightedmean-msmarco-specb-bitfit |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 |
|
metrics: |
|
- type: accuracy |
|
value: 69.22388059701493 |
|
- type: ap |
|
value: 32.04724673950256 |
|
- type: f1 |
|
value: 63.25719825770428 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 |
|
metrics: |
|
- type: accuracy |
|
value: 71.26109999999998 |
|
- type: ap |
|
value: 66.16336378255403 |
|
- type: f1 |
|
value: 70.89719145825303 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: c379a6705fec24a2493fa68e011692605f44e119 |
|
metrics: |
|
- type: accuracy |
|
value: 39.19199999999999 |
|
- type: f1 |
|
value: 38.580766731113826 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.311999999999998 |
|
- type: map_at_10 |
|
value: 42.620000000000005 |
|
- type: map_at_100 |
|
value: 43.707 |
|
- type: map_at_1000 |
|
value: 43.714999999999996 |
|
- type: map_at_3 |
|
value: 37.624 |
|
- type: map_at_5 |
|
value: 40.498 |
|
- type: mrr_at_1 |
|
value: 27.667 |
|
- type: mrr_at_10 |
|
value: 42.737 |
|
- type: mrr_at_100 |
|
value: 43.823 |
|
- type: mrr_at_1000 |
|
value: 43.830999999999996 |
|
- type: mrr_at_3 |
|
value: 37.743 |
|
- type: mrr_at_5 |
|
value: 40.616 |
|
- type: ndcg_at_1 |
|
value: 27.311999999999998 |
|
- type: ndcg_at_10 |
|
value: 51.37500000000001 |
|
- type: ndcg_at_100 |
|
value: 55.778000000000006 |
|
- type: ndcg_at_1000 |
|
value: 55.96600000000001 |
|
- type: ndcg_at_3 |
|
value: 41.087 |
|
- type: ndcg_at_5 |
|
value: 46.269 |
|
- type: precision_at_1 |
|
value: 27.311999999999998 |
|
- type: precision_at_10 |
|
value: 7.945 |
|
- type: precision_at_100 |
|
value: 0.9820000000000001 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 17.046 |
|
- type: precision_at_5 |
|
value: 12.745000000000001 |
|
- type: recall_at_1 |
|
value: 27.311999999999998 |
|
- type: recall_at_10 |
|
value: 79.445 |
|
- type: recall_at_100 |
|
value: 98.151 |
|
- type: recall_at_1000 |
|
value: 99.57300000000001 |
|
- type: recall_at_3 |
|
value: 51.13799999999999 |
|
- type: recall_at_5 |
|
value: 63.727000000000004 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 |
|
metrics: |
|
- type: v_measure |
|
value: 45.59037428592033 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 |
|
metrics: |
|
- type: v_measure |
|
value: 38.86371701986363 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c |
|
metrics: |
|
- type: map |
|
value: 61.625568691427766 |
|
- type: mrr |
|
value: 75.83256386580486 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: 9ee918f184421b6bd48b78f6c714d86546106103 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.96074355094802 |
|
- type: cos_sim_spearman |
|
value: 86.2501580394454 |
|
- type: euclidean_pearson |
|
value: 82.18427440380462 |
|
- type: euclidean_spearman |
|
value: 80.14760935017947 |
|
- type: manhattan_pearson |
|
value: 82.24621578156392 |
|
- type: manhattan_spearman |
|
value: 80.00363016590163 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 |
|
metrics: |
|
- type: accuracy |
|
value: 84.49350649350649 |
|
- type: f1 |
|
value: 84.4249343233736 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 |
|
metrics: |
|
- type: v_measure |
|
value: 36.551459722989385 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 |
|
metrics: |
|
- type: v_measure |
|
value: 33.69901851846774 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.499 |
|
- type: map_at_10 |
|
value: 41.208 |
|
- type: map_at_100 |
|
value: 42.638 |
|
- type: map_at_1000 |
|
value: 42.754 |
|
- type: map_at_3 |
|
value: 37.506 |
|
- type: map_at_5 |
|
value: 39.422000000000004 |
|
- type: mrr_at_1 |
|
value: 37.339 |
|
- type: mrr_at_10 |
|
value: 47.051 |
|
- type: mrr_at_100 |
|
value: 47.745 |
|
- type: mrr_at_1000 |
|
value: 47.786 |
|
- type: mrr_at_3 |
|
value: 44.086999999999996 |
|
- type: mrr_at_5 |
|
value: 45.711 |
|
- type: ndcg_at_1 |
|
value: 37.339 |
|
- type: ndcg_at_10 |
|
value: 47.666 |
|
- type: ndcg_at_100 |
|
value: 52.994 |
|
- type: ndcg_at_1000 |
|
value: 54.928999999999995 |
|
- type: ndcg_at_3 |
|
value: 41.982 |
|
- type: ndcg_at_5 |
|
value: 44.42 |
|
- type: precision_at_1 |
|
value: 37.339 |
|
- type: precision_at_10 |
|
value: 9.127 |
|
- type: precision_at_100 |
|
value: 1.4749999999999999 |
|
- type: precision_at_1000 |
|
value: 0.194 |
|
- type: precision_at_3 |
|
value: 20.076 |
|
- type: precision_at_5 |
|
value: 14.449000000000002 |
|
- type: recall_at_1 |
|
value: 30.499 |
|
- type: recall_at_10 |
|
value: 60.328 |
|
- type: recall_at_100 |
|
value: 82.57900000000001 |
|
- type: recall_at_1000 |
|
value: 95.074 |
|
- type: recall_at_3 |
|
value: 44.17 |
|
- type: recall_at_5 |
|
value: 50.94 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.613 |
|
- type: map_at_10 |
|
value: 40.781 |
|
- type: map_at_100 |
|
value: 42.018 |
|
- type: map_at_1000 |
|
value: 42.132999999999996 |
|
- type: map_at_3 |
|
value: 37.816 |
|
- type: map_at_5 |
|
value: 39.389 |
|
- type: mrr_at_1 |
|
value: 38.408 |
|
- type: mrr_at_10 |
|
value: 46.631 |
|
- type: mrr_at_100 |
|
value: 47.332 |
|
- type: mrr_at_1000 |
|
value: 47.368 |
|
- type: mrr_at_3 |
|
value: 44.384 |
|
- type: mrr_at_5 |
|
value: 45.661 |
|
- type: ndcg_at_1 |
|
value: 38.408 |
|
- type: ndcg_at_10 |
|
value: 46.379999999999995 |
|
- type: ndcg_at_100 |
|
value: 50.81 |
|
- type: ndcg_at_1000 |
|
value: 52.663000000000004 |
|
- type: ndcg_at_3 |
|
value: 42.18 |
|
- type: ndcg_at_5 |
|
value: 43.974000000000004 |
|
- type: precision_at_1 |
|
value: 38.408 |
|
- type: precision_at_10 |
|
value: 8.656 |
|
- type: precision_at_100 |
|
value: 1.3860000000000001 |
|
- type: precision_at_1000 |
|
value: 0.184 |
|
- type: precision_at_3 |
|
value: 20.276 |
|
- type: precision_at_5 |
|
value: 14.241999999999999 |
|
- type: recall_at_1 |
|
value: 30.613 |
|
- type: recall_at_10 |
|
value: 56.44 |
|
- type: recall_at_100 |
|
value: 75.044 |
|
- type: recall_at_1000 |
|
value: 86.426 |
|
- type: recall_at_3 |
|
value: 43.766 |
|
- type: recall_at_5 |
|
value: 48.998000000000005 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 37.370999999999995 |
|
- type: map_at_10 |
|
value: 49.718 |
|
- type: map_at_100 |
|
value: 50.737 |
|
- type: map_at_1000 |
|
value: 50.79 |
|
- type: map_at_3 |
|
value: 46.231 |
|
- type: map_at_5 |
|
value: 48.329 |
|
- type: mrr_at_1 |
|
value: 42.884 |
|
- type: mrr_at_10 |
|
value: 53.176 |
|
- type: mrr_at_100 |
|
value: 53.81700000000001 |
|
- type: mrr_at_1000 |
|
value: 53.845 |
|
- type: mrr_at_3 |
|
value: 50.199000000000005 |
|
- type: mrr_at_5 |
|
value: 52.129999999999995 |
|
- type: ndcg_at_1 |
|
value: 42.884 |
|
- type: ndcg_at_10 |
|
value: 55.826 |
|
- type: ndcg_at_100 |
|
value: 59.93000000000001 |
|
- type: ndcg_at_1000 |
|
value: 61.013 |
|
- type: ndcg_at_3 |
|
value: 49.764 |
|
- type: ndcg_at_5 |
|
value: 53.025999999999996 |
|
- type: precision_at_1 |
|
value: 42.884 |
|
- type: precision_at_10 |
|
value: 9.046999999999999 |
|
- type: precision_at_100 |
|
value: 1.212 |
|
- type: precision_at_1000 |
|
value: 0.135 |
|
- type: precision_at_3 |
|
value: 22.131999999999998 |
|
- type: precision_at_5 |
|
value: 15.524 |
|
- type: recall_at_1 |
|
value: 37.370999999999995 |
|
- type: recall_at_10 |
|
value: 70.482 |
|
- type: recall_at_100 |
|
value: 88.425 |
|
- type: recall_at_1000 |
|
value: 96.03399999999999 |
|
- type: recall_at_3 |
|
value: 54.43 |
|
- type: recall_at_5 |
|
value: 62.327999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.875999999999998 |
|
- type: map_at_10 |
|
value: 31.715 |
|
- type: map_at_100 |
|
value: 32.847 |
|
- type: map_at_1000 |
|
value: 32.922000000000004 |
|
- type: map_at_3 |
|
value: 29.049999999999997 |
|
- type: map_at_5 |
|
value: 30.396 |
|
- type: mrr_at_1 |
|
value: 24.52 |
|
- type: mrr_at_10 |
|
value: 33.497 |
|
- type: mrr_at_100 |
|
value: 34.455000000000005 |
|
- type: mrr_at_1000 |
|
value: 34.510000000000005 |
|
- type: mrr_at_3 |
|
value: 30.791 |
|
- type: mrr_at_5 |
|
value: 32.175 |
|
- type: ndcg_at_1 |
|
value: 24.52 |
|
- type: ndcg_at_10 |
|
value: 36.95 |
|
- type: ndcg_at_100 |
|
value: 42.238 |
|
- type: ndcg_at_1000 |
|
value: 44.147999999999996 |
|
- type: ndcg_at_3 |
|
value: 31.435000000000002 |
|
- type: ndcg_at_5 |
|
value: 33.839000000000006 |
|
- type: precision_at_1 |
|
value: 24.52 |
|
- type: precision_at_10 |
|
value: 5.9319999999999995 |
|
- type: precision_at_100 |
|
value: 0.901 |
|
- type: precision_at_1000 |
|
value: 0.11 |
|
- type: precision_at_3 |
|
value: 13.446 |
|
- type: precision_at_5 |
|
value: 9.469 |
|
- type: recall_at_1 |
|
value: 22.875999999999998 |
|
- type: recall_at_10 |
|
value: 51.38 |
|
- type: recall_at_100 |
|
value: 75.31099999999999 |
|
- type: recall_at_1000 |
|
value: 89.718 |
|
- type: recall_at_3 |
|
value: 36.26 |
|
- type: recall_at_5 |
|
value: 42.248999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 14.984 |
|
- type: map_at_10 |
|
value: 23.457 |
|
- type: map_at_100 |
|
value: 24.723 |
|
- type: map_at_1000 |
|
value: 24.846 |
|
- type: map_at_3 |
|
value: 20.873 |
|
- type: map_at_5 |
|
value: 22.357 |
|
- type: mrr_at_1 |
|
value: 18.159 |
|
- type: mrr_at_10 |
|
value: 27.431 |
|
- type: mrr_at_100 |
|
value: 28.449 |
|
- type: mrr_at_1000 |
|
value: 28.52 |
|
- type: mrr_at_3 |
|
value: 24.979000000000003 |
|
- type: mrr_at_5 |
|
value: 26.447 |
|
- type: ndcg_at_1 |
|
value: 18.159 |
|
- type: ndcg_at_10 |
|
value: 28.627999999999997 |
|
- type: ndcg_at_100 |
|
value: 34.741 |
|
- type: ndcg_at_1000 |
|
value: 37.516 |
|
- type: ndcg_at_3 |
|
value: 23.902 |
|
- type: ndcg_at_5 |
|
value: 26.294 |
|
- type: precision_at_1 |
|
value: 18.159 |
|
- type: precision_at_10 |
|
value: 5.485 |
|
- type: precision_at_100 |
|
value: 0.985 |
|
- type: precision_at_1000 |
|
value: 0.136 |
|
- type: precision_at_3 |
|
value: 11.774 |
|
- type: precision_at_5 |
|
value: 8.731 |
|
- type: recall_at_1 |
|
value: 14.984 |
|
- type: recall_at_10 |
|
value: 40.198 |
|
- type: recall_at_100 |
|
value: 67.11500000000001 |
|
- type: recall_at_1000 |
|
value: 86.497 |
|
- type: recall_at_3 |
|
value: 27.639000000000003 |
|
- type: recall_at_5 |
|
value: 33.595000000000006 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.067 |
|
- type: map_at_10 |
|
value: 39.457 |
|
- type: map_at_100 |
|
value: 40.83 |
|
- type: map_at_1000 |
|
value: 40.94 |
|
- type: map_at_3 |
|
value: 35.995 |
|
- type: map_at_5 |
|
value: 38.159 |
|
- type: mrr_at_1 |
|
value: 34.937000000000005 |
|
- type: mrr_at_10 |
|
value: 44.755 |
|
- type: mrr_at_100 |
|
value: 45.549 |
|
- type: mrr_at_1000 |
|
value: 45.589 |
|
- type: mrr_at_3 |
|
value: 41.947 |
|
- type: mrr_at_5 |
|
value: 43.733 |
|
- type: ndcg_at_1 |
|
value: 34.937000000000005 |
|
- type: ndcg_at_10 |
|
value: 45.573 |
|
- type: ndcg_at_100 |
|
value: 51.266999999999996 |
|
- type: ndcg_at_1000 |
|
value: 53.184 |
|
- type: ndcg_at_3 |
|
value: 39.961999999999996 |
|
- type: ndcg_at_5 |
|
value: 43.02 |
|
- type: precision_at_1 |
|
value: 34.937000000000005 |
|
- type: precision_at_10 |
|
value: 8.296000000000001 |
|
- type: precision_at_100 |
|
value: 1.32 |
|
- type: precision_at_1000 |
|
value: 0.167 |
|
- type: precision_at_3 |
|
value: 18.8 |
|
- type: precision_at_5 |
|
value: 13.763 |
|
- type: recall_at_1 |
|
value: 29.067 |
|
- type: recall_at_10 |
|
value: 58.298 |
|
- type: recall_at_100 |
|
value: 82.25099999999999 |
|
- type: recall_at_1000 |
|
value: 94.476 |
|
- type: recall_at_3 |
|
value: 42.984 |
|
- type: recall_at_5 |
|
value: 50.658 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.985999999999997 |
|
- type: map_at_10 |
|
value: 35.746 |
|
- type: map_at_100 |
|
value: 37.067 |
|
- type: map_at_1000 |
|
value: 37.191 |
|
- type: map_at_3 |
|
value: 32.599000000000004 |
|
- type: map_at_5 |
|
value: 34.239000000000004 |
|
- type: mrr_at_1 |
|
value: 31.735000000000003 |
|
- type: mrr_at_10 |
|
value: 40.515 |
|
- type: mrr_at_100 |
|
value: 41.459 |
|
- type: mrr_at_1000 |
|
value: 41.516 |
|
- type: mrr_at_3 |
|
value: 37.938 |
|
- type: mrr_at_5 |
|
value: 39.25 |
|
- type: ndcg_at_1 |
|
value: 31.735000000000003 |
|
- type: ndcg_at_10 |
|
value: 41.484 |
|
- type: ndcg_at_100 |
|
value: 47.047 |
|
- type: ndcg_at_1000 |
|
value: 49.427 |
|
- type: ndcg_at_3 |
|
value: 36.254999999999995 |
|
- type: ndcg_at_5 |
|
value: 38.375 |
|
- type: precision_at_1 |
|
value: 31.735000000000003 |
|
- type: precision_at_10 |
|
value: 7.66 |
|
- type: precision_at_100 |
|
value: 1.234 |
|
- type: precision_at_1000 |
|
value: 0.16 |
|
- type: precision_at_3 |
|
value: 17.427999999999997 |
|
- type: precision_at_5 |
|
value: 12.328999999999999 |
|
- type: recall_at_1 |
|
value: 25.985999999999997 |
|
- type: recall_at_10 |
|
value: 53.761 |
|
- type: recall_at_100 |
|
value: 77.149 |
|
- type: recall_at_1000 |
|
value: 93.342 |
|
- type: recall_at_3 |
|
value: 39.068000000000005 |
|
- type: recall_at_5 |
|
value: 44.693 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.949749999999998 |
|
- type: map_at_10 |
|
value: 34.04991666666667 |
|
- type: map_at_100 |
|
value: 35.26825 |
|
- type: map_at_1000 |
|
value: 35.38316666666667 |
|
- type: map_at_3 |
|
value: 31.181333333333335 |
|
- type: map_at_5 |
|
value: 32.77391666666667 |
|
- type: mrr_at_1 |
|
value: 29.402833333333334 |
|
- type: mrr_at_10 |
|
value: 38.01633333333333 |
|
- type: mrr_at_100 |
|
value: 38.88033333333334 |
|
- type: mrr_at_1000 |
|
value: 38.938500000000005 |
|
- type: mrr_at_3 |
|
value: 35.5175 |
|
- type: mrr_at_5 |
|
value: 36.93808333333333 |
|
- type: ndcg_at_1 |
|
value: 29.402833333333334 |
|
- type: ndcg_at_10 |
|
value: 39.403166666666664 |
|
- type: ndcg_at_100 |
|
value: 44.66408333333333 |
|
- type: ndcg_at_1000 |
|
value: 46.96283333333333 |
|
- type: ndcg_at_3 |
|
value: 34.46633333333334 |
|
- type: ndcg_at_5 |
|
value: 36.78441666666667 |
|
- type: precision_at_1 |
|
value: 29.402833333333334 |
|
- type: precision_at_10 |
|
value: 6.965833333333333 |
|
- type: precision_at_100 |
|
value: 1.1330833333333334 |
|
- type: precision_at_1000 |
|
value: 0.15158333333333335 |
|
- type: precision_at_3 |
|
value: 15.886666666666665 |
|
- type: precision_at_5 |
|
value: 11.360416666666667 |
|
- type: recall_at_1 |
|
value: 24.949749999999998 |
|
- type: recall_at_10 |
|
value: 51.29325 |
|
- type: recall_at_100 |
|
value: 74.3695 |
|
- type: recall_at_1000 |
|
value: 90.31299999999999 |
|
- type: recall_at_3 |
|
value: 37.580083333333334 |
|
- type: recall_at_5 |
|
value: 43.529666666666664 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.081999999999997 |
|
- type: map_at_10 |
|
value: 29.215999999999998 |
|
- type: map_at_100 |
|
value: 30.163 |
|
- type: map_at_1000 |
|
value: 30.269000000000002 |
|
- type: map_at_3 |
|
value: 26.942 |
|
- type: map_at_5 |
|
value: 28.236 |
|
- type: mrr_at_1 |
|
value: 24.847 |
|
- type: mrr_at_10 |
|
value: 31.918999999999997 |
|
- type: mrr_at_100 |
|
value: 32.817 |
|
- type: mrr_at_1000 |
|
value: 32.897 |
|
- type: mrr_at_3 |
|
value: 29.831000000000003 |
|
- type: mrr_at_5 |
|
value: 31.019999999999996 |
|
- type: ndcg_at_1 |
|
value: 24.847 |
|
- type: ndcg_at_10 |
|
value: 33.4 |
|
- type: ndcg_at_100 |
|
value: 38.354 |
|
- type: ndcg_at_1000 |
|
value: 41.045 |
|
- type: ndcg_at_3 |
|
value: 29.236 |
|
- type: ndcg_at_5 |
|
value: 31.258000000000003 |
|
- type: precision_at_1 |
|
value: 24.847 |
|
- type: precision_at_10 |
|
value: 5.353 |
|
- type: precision_at_100 |
|
value: 0.853 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: precision_at_3 |
|
value: 12.679000000000002 |
|
- type: precision_at_5 |
|
value: 8.988 |
|
- type: recall_at_1 |
|
value: 22.081999999999997 |
|
- type: recall_at_10 |
|
value: 43.505 |
|
- type: recall_at_100 |
|
value: 66.45400000000001 |
|
- type: recall_at_1000 |
|
value: 86.378 |
|
- type: recall_at_3 |
|
value: 32.163000000000004 |
|
- type: recall_at_5 |
|
value: 37.059999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.540000000000001 |
|
- type: map_at_10 |
|
value: 22.362000000000002 |
|
- type: map_at_100 |
|
value: 23.435 |
|
- type: map_at_1000 |
|
value: 23.564 |
|
- type: map_at_3 |
|
value: 20.143 |
|
- type: map_at_5 |
|
value: 21.324 |
|
- type: mrr_at_1 |
|
value: 18.892 |
|
- type: mrr_at_10 |
|
value: 25.942999999999998 |
|
- type: mrr_at_100 |
|
value: 26.883000000000003 |
|
- type: mrr_at_1000 |
|
value: 26.968999999999998 |
|
- type: mrr_at_3 |
|
value: 23.727 |
|
- type: mrr_at_5 |
|
value: 24.923000000000002 |
|
- type: ndcg_at_1 |
|
value: 18.892 |
|
- type: ndcg_at_10 |
|
value: 26.811 |
|
- type: ndcg_at_100 |
|
value: 32.066 |
|
- type: ndcg_at_1000 |
|
value: 35.166 |
|
- type: ndcg_at_3 |
|
value: 22.706 |
|
- type: ndcg_at_5 |
|
value: 24.508 |
|
- type: precision_at_1 |
|
value: 18.892 |
|
- type: precision_at_10 |
|
value: 4.942 |
|
- type: precision_at_100 |
|
value: 0.878 |
|
- type: precision_at_1000 |
|
value: 0.131 |
|
- type: precision_at_3 |
|
value: 10.748000000000001 |
|
- type: precision_at_5 |
|
value: 7.784000000000001 |
|
- type: recall_at_1 |
|
value: 15.540000000000001 |
|
- type: recall_at_10 |
|
value: 36.742999999999995 |
|
- type: recall_at_100 |
|
value: 60.525 |
|
- type: recall_at_1000 |
|
value: 82.57600000000001 |
|
- type: recall_at_3 |
|
value: 25.252000000000002 |
|
- type: recall_at_5 |
|
value: 29.872 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.453 |
|
- type: map_at_10 |
|
value: 33.363 |
|
- type: map_at_100 |
|
value: 34.579 |
|
- type: map_at_1000 |
|
value: 34.686 |
|
- type: map_at_3 |
|
value: 30.583 |
|
- type: map_at_5 |
|
value: 32.118 |
|
- type: mrr_at_1 |
|
value: 28.918 |
|
- type: mrr_at_10 |
|
value: 37.675 |
|
- type: mrr_at_100 |
|
value: 38.567 |
|
- type: mrr_at_1000 |
|
value: 38.632 |
|
- type: mrr_at_3 |
|
value: 35.260999999999996 |
|
- type: mrr_at_5 |
|
value: 36.576 |
|
- type: ndcg_at_1 |
|
value: 28.918 |
|
- type: ndcg_at_10 |
|
value: 38.736 |
|
- type: ndcg_at_100 |
|
value: 44.261 |
|
- type: ndcg_at_1000 |
|
value: 46.72 |
|
- type: ndcg_at_3 |
|
value: 33.81 |
|
- type: ndcg_at_5 |
|
value: 36.009 |
|
- type: precision_at_1 |
|
value: 28.918 |
|
- type: precision_at_10 |
|
value: 6.586 |
|
- type: precision_at_100 |
|
value: 1.047 |
|
- type: precision_at_1000 |
|
value: 0.13699999999999998 |
|
- type: precision_at_3 |
|
value: 15.360999999999999 |
|
- type: precision_at_5 |
|
value: 10.857999999999999 |
|
- type: recall_at_1 |
|
value: 24.453 |
|
- type: recall_at_10 |
|
value: 50.885999999999996 |
|
- type: recall_at_100 |
|
value: 75.03 |
|
- type: recall_at_1000 |
|
value: 92.123 |
|
- type: recall_at_3 |
|
value: 37.138 |
|
- type: recall_at_5 |
|
value: 42.864999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.57 |
|
- type: map_at_10 |
|
value: 33.672000000000004 |
|
- type: map_at_100 |
|
value: 35.244 |
|
- type: map_at_1000 |
|
value: 35.467 |
|
- type: map_at_3 |
|
value: 30.712 |
|
- type: map_at_5 |
|
value: 32.383 |
|
- type: mrr_at_1 |
|
value: 29.644 |
|
- type: mrr_at_10 |
|
value: 38.344 |
|
- type: mrr_at_100 |
|
value: 39.219 |
|
- type: mrr_at_1000 |
|
value: 39.282000000000004 |
|
- type: mrr_at_3 |
|
value: 35.771 |
|
- type: mrr_at_5 |
|
value: 37.273 |
|
- type: ndcg_at_1 |
|
value: 29.644 |
|
- type: ndcg_at_10 |
|
value: 39.567 |
|
- type: ndcg_at_100 |
|
value: 45.097 |
|
- type: ndcg_at_1000 |
|
value: 47.923 |
|
- type: ndcg_at_3 |
|
value: 34.768 |
|
- type: ndcg_at_5 |
|
value: 37.122 |
|
- type: precision_at_1 |
|
value: 29.644 |
|
- type: precision_at_10 |
|
value: 7.5889999999999995 |
|
- type: precision_at_100 |
|
value: 1.478 |
|
- type: precision_at_1000 |
|
value: 0.23500000000000001 |
|
- type: precision_at_3 |
|
value: 16.337 |
|
- type: precision_at_5 |
|
value: 12.055 |
|
- type: recall_at_1 |
|
value: 24.57 |
|
- type: recall_at_10 |
|
value: 51.00900000000001 |
|
- type: recall_at_100 |
|
value: 75.423 |
|
- type: recall_at_1000 |
|
value: 93.671 |
|
- type: recall_at_3 |
|
value: 36.925999999999995 |
|
- type: recall_at_5 |
|
value: 43.245 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.356 |
|
- type: map_at_10 |
|
value: 27.904 |
|
- type: map_at_100 |
|
value: 28.938000000000002 |
|
- type: map_at_1000 |
|
value: 29.036 |
|
- type: map_at_3 |
|
value: 25.726 |
|
- type: map_at_5 |
|
value: 26.935 |
|
- type: mrr_at_1 |
|
value: 22.551 |
|
- type: mrr_at_10 |
|
value: 29.259 |
|
- type: mrr_at_100 |
|
value: 30.272 |
|
- type: mrr_at_1000 |
|
value: 30.348000000000003 |
|
- type: mrr_at_3 |
|
value: 27.295 |
|
- type: mrr_at_5 |
|
value: 28.358 |
|
- type: ndcg_at_1 |
|
value: 22.551 |
|
- type: ndcg_at_10 |
|
value: 31.817 |
|
- type: ndcg_at_100 |
|
value: 37.164 |
|
- type: ndcg_at_1000 |
|
value: 39.82 |
|
- type: ndcg_at_3 |
|
value: 27.595999999999997 |
|
- type: ndcg_at_5 |
|
value: 29.568 |
|
- type: precision_at_1 |
|
value: 22.551 |
|
- type: precision_at_10 |
|
value: 4.917 |
|
- type: precision_at_100 |
|
value: 0.828 |
|
- type: precision_at_1000 |
|
value: 0.11399999999999999 |
|
- type: precision_at_3 |
|
value: 11.583 |
|
- type: precision_at_5 |
|
value: 8.133 |
|
- type: recall_at_1 |
|
value: 21.356 |
|
- type: recall_at_10 |
|
value: 42.489 |
|
- type: recall_at_100 |
|
value: 67.128 |
|
- type: recall_at_1000 |
|
value: 87.441 |
|
- type: recall_at_3 |
|
value: 31.165 |
|
- type: recall_at_5 |
|
value: 35.853 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.306000000000001 |
|
- type: map_at_10 |
|
value: 21.523 |
|
- type: map_at_100 |
|
value: 23.358 |
|
- type: map_at_1000 |
|
value: 23.541 |
|
- type: map_at_3 |
|
value: 17.809 |
|
- type: map_at_5 |
|
value: 19.631 |
|
- type: mrr_at_1 |
|
value: 27.948 |
|
- type: mrr_at_10 |
|
value: 40.355000000000004 |
|
- type: mrr_at_100 |
|
value: 41.166000000000004 |
|
- type: mrr_at_1000 |
|
value: 41.203 |
|
- type: mrr_at_3 |
|
value: 36.819 |
|
- type: mrr_at_5 |
|
value: 38.958999999999996 |
|
- type: ndcg_at_1 |
|
value: 27.948 |
|
- type: ndcg_at_10 |
|
value: 30.462 |
|
- type: ndcg_at_100 |
|
value: 37.473 |
|
- type: ndcg_at_1000 |
|
value: 40.717999999999996 |
|
- type: ndcg_at_3 |
|
value: 24.646 |
|
- type: ndcg_at_5 |
|
value: 26.642 |
|
- type: precision_at_1 |
|
value: 27.948 |
|
- type: precision_at_10 |
|
value: 9.648 |
|
- type: precision_at_100 |
|
value: 1.7239999999999998 |
|
- type: precision_at_1000 |
|
value: 0.232 |
|
- type: precision_at_3 |
|
value: 18.48 |
|
- type: precision_at_5 |
|
value: 14.293 |
|
- type: recall_at_1 |
|
value: 12.306000000000001 |
|
- type: recall_at_10 |
|
value: 37.181 |
|
- type: recall_at_100 |
|
value: 61.148 |
|
- type: recall_at_1000 |
|
value: 79.401 |
|
- type: recall_at_3 |
|
value: 22.883 |
|
- type: recall_at_5 |
|
value: 28.59 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: f097057d03ed98220bc7309ddb10b71a54d667d6 |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.357 |
|
- type: map_at_10 |
|
value: 18.849 |
|
- type: map_at_100 |
|
value: 25.369000000000003 |
|
- type: map_at_1000 |
|
value: 26.950000000000003 |
|
- type: map_at_3 |
|
value: 13.625000000000002 |
|
- type: map_at_5 |
|
value: 15.956999999999999 |
|
- type: mrr_at_1 |
|
value: 67.75 |
|
- type: mrr_at_10 |
|
value: 74.734 |
|
- type: mrr_at_100 |
|
value: 75.1 |
|
- type: mrr_at_1000 |
|
value: 75.10900000000001 |
|
- type: mrr_at_3 |
|
value: 73.542 |
|
- type: mrr_at_5 |
|
value: 74.167 |
|
- type: ndcg_at_1 |
|
value: 55.375 |
|
- type: ndcg_at_10 |
|
value: 39.873999999999995 |
|
- type: ndcg_at_100 |
|
value: 43.098 |
|
- type: ndcg_at_1000 |
|
value: 50.69200000000001 |
|
- type: ndcg_at_3 |
|
value: 44.856 |
|
- type: ndcg_at_5 |
|
value: 42.138999999999996 |
|
- type: precision_at_1 |
|
value: 67.75 |
|
- type: precision_at_10 |
|
value: 31.1 |
|
- type: precision_at_100 |
|
value: 9.303 |
|
- type: precision_at_1000 |
|
value: 2.0060000000000002 |
|
- type: precision_at_3 |
|
value: 48.25 |
|
- type: precision_at_5 |
|
value: 40.949999999999996 |
|
- type: recall_at_1 |
|
value: 9.357 |
|
- type: recall_at_10 |
|
value: 23.832 |
|
- type: recall_at_100 |
|
value: 47.906 |
|
- type: recall_at_1000 |
|
value: 71.309 |
|
- type: recall_at_3 |
|
value: 14.512 |
|
- type: recall_at_5 |
|
value: 18.3 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 829147f8f75a25f005913200eb5ed41fae320aa1 |
|
metrics: |
|
- type: accuracy |
|
value: 49.655 |
|
- type: f1 |
|
value: 45.51976190938951 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 |
|
metrics: |
|
- type: map_at_1 |
|
value: 62.739999999999995 |
|
- type: map_at_10 |
|
value: 73.07000000000001 |
|
- type: map_at_100 |
|
value: 73.398 |
|
- type: map_at_1000 |
|
value: 73.41 |
|
- type: map_at_3 |
|
value: 71.33800000000001 |
|
- type: map_at_5 |
|
value: 72.423 |
|
- type: mrr_at_1 |
|
value: 67.777 |
|
- type: mrr_at_10 |
|
value: 77.873 |
|
- type: mrr_at_100 |
|
value: 78.091 |
|
- type: mrr_at_1000 |
|
value: 78.094 |
|
- type: mrr_at_3 |
|
value: 76.375 |
|
- type: mrr_at_5 |
|
value: 77.316 |
|
- type: ndcg_at_1 |
|
value: 67.777 |
|
- type: ndcg_at_10 |
|
value: 78.24 |
|
- type: ndcg_at_100 |
|
value: 79.557 |
|
- type: ndcg_at_1000 |
|
value: 79.814 |
|
- type: ndcg_at_3 |
|
value: 75.125 |
|
- type: ndcg_at_5 |
|
value: 76.834 |
|
- type: precision_at_1 |
|
value: 67.777 |
|
- type: precision_at_10 |
|
value: 9.832 |
|
- type: precision_at_100 |
|
value: 1.061 |
|
- type: precision_at_1000 |
|
value: 0.11 |
|
- type: precision_at_3 |
|
value: 29.433 |
|
- type: precision_at_5 |
|
value: 18.665000000000003 |
|
- type: recall_at_1 |
|
value: 62.739999999999995 |
|
- type: recall_at_10 |
|
value: 89.505 |
|
- type: recall_at_100 |
|
value: 95.102 |
|
- type: recall_at_1000 |
|
value: 96.825 |
|
- type: recall_at_3 |
|
value: 81.028 |
|
- type: recall_at_5 |
|
value: 85.28099999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.467 |
|
- type: map_at_10 |
|
value: 30.020999999999997 |
|
- type: map_at_100 |
|
value: 31.739 |
|
- type: map_at_1000 |
|
value: 31.934 |
|
- type: map_at_3 |
|
value: 26.003 |
|
- type: map_at_5 |
|
value: 28.338 |
|
- type: mrr_at_1 |
|
value: 35.339999999999996 |
|
- type: mrr_at_10 |
|
value: 44.108999999999995 |
|
- type: mrr_at_100 |
|
value: 44.993 |
|
- type: mrr_at_1000 |
|
value: 45.042 |
|
- type: mrr_at_3 |
|
value: 41.667 |
|
- type: mrr_at_5 |
|
value: 43.14 |
|
- type: ndcg_at_1 |
|
value: 35.339999999999996 |
|
- type: ndcg_at_10 |
|
value: 37.202 |
|
- type: ndcg_at_100 |
|
value: 43.852999999999994 |
|
- type: ndcg_at_1000 |
|
value: 47.235 |
|
- type: ndcg_at_3 |
|
value: 33.5 |
|
- type: ndcg_at_5 |
|
value: 34.985 |
|
- type: precision_at_1 |
|
value: 35.339999999999996 |
|
- type: precision_at_10 |
|
value: 10.247 |
|
- type: precision_at_100 |
|
value: 1.7149999999999999 |
|
- type: precision_at_1000 |
|
value: 0.232 |
|
- type: precision_at_3 |
|
value: 22.222 |
|
- type: precision_at_5 |
|
value: 16.573999999999998 |
|
- type: recall_at_1 |
|
value: 18.467 |
|
- type: recall_at_10 |
|
value: 44.080999999999996 |
|
- type: recall_at_100 |
|
value: 68.72200000000001 |
|
- type: recall_at_1000 |
|
value: 89.087 |
|
- type: recall_at_3 |
|
value: 30.567 |
|
- type: recall_at_5 |
|
value: 36.982 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: 766870b35a1b9ca65e67a0d1913899973551fc6c |
|
metrics: |
|
- type: map_at_1 |
|
value: 35.726 |
|
- type: map_at_10 |
|
value: 50.207 |
|
- type: map_at_100 |
|
value: 51.05499999999999 |
|
- type: map_at_1000 |
|
value: 51.12799999999999 |
|
- type: map_at_3 |
|
value: 47.576 |
|
- type: map_at_5 |
|
value: 49.172 |
|
- type: mrr_at_1 |
|
value: 71.452 |
|
- type: mrr_at_10 |
|
value: 77.41900000000001 |
|
- type: mrr_at_100 |
|
value: 77.711 |
|
- type: mrr_at_1000 |
|
value: 77.723 |
|
- type: mrr_at_3 |
|
value: 76.39399999999999 |
|
- type: mrr_at_5 |
|
value: 77.00099999999999 |
|
- type: ndcg_at_1 |
|
value: 71.452 |
|
- type: ndcg_at_10 |
|
value: 59.260999999999996 |
|
- type: ndcg_at_100 |
|
value: 62.424 |
|
- type: ndcg_at_1000 |
|
value: 63.951 |
|
- type: ndcg_at_3 |
|
value: 55.327000000000005 |
|
- type: ndcg_at_5 |
|
value: 57.416999999999994 |
|
- type: precision_at_1 |
|
value: 71.452 |
|
- type: precision_at_10 |
|
value: 12.061 |
|
- type: precision_at_100 |
|
value: 1.455 |
|
- type: precision_at_1000 |
|
value: 0.166 |
|
- type: precision_at_3 |
|
value: 34.36 |
|
- type: precision_at_5 |
|
value: 22.266 |
|
- type: recall_at_1 |
|
value: 35.726 |
|
- type: recall_at_10 |
|
value: 60.304 |
|
- type: recall_at_100 |
|
value: 72.75500000000001 |
|
- type: recall_at_1000 |
|
value: 82.978 |
|
- type: recall_at_3 |
|
value: 51.54 |
|
- type: recall_at_5 |
|
value: 55.665 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 |
|
metrics: |
|
- type: accuracy |
|
value: 66.63759999999999 |
|
- type: ap |
|
value: 61.48938261286748 |
|
- type: f1 |
|
value: 66.35089269264965 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: validation |
|
revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 |
|
metrics: |
|
- type: map_at_1 |
|
value: 20.842 |
|
- type: map_at_10 |
|
value: 32.992 |
|
- type: map_at_100 |
|
value: 34.236 |
|
- type: map_at_1000 |
|
value: 34.286 |
|
- type: map_at_3 |
|
value: 29.049000000000003 |
|
- type: map_at_5 |
|
value: 31.391999999999996 |
|
- type: mrr_at_1 |
|
value: 21.375 |
|
- type: mrr_at_10 |
|
value: 33.581 |
|
- type: mrr_at_100 |
|
value: 34.760000000000005 |
|
- type: mrr_at_1000 |
|
value: 34.803 |
|
- type: mrr_at_3 |
|
value: 29.704000000000004 |
|
- type: mrr_at_5 |
|
value: 32.015 |
|
- type: ndcg_at_1 |
|
value: 21.375 |
|
- type: ndcg_at_10 |
|
value: 39.905 |
|
- type: ndcg_at_100 |
|
value: 45.843 |
|
- type: ndcg_at_1000 |
|
value: 47.083999999999996 |
|
- type: ndcg_at_3 |
|
value: 31.918999999999997 |
|
- type: ndcg_at_5 |
|
value: 36.107 |
|
- type: precision_at_1 |
|
value: 21.375 |
|
- type: precision_at_10 |
|
value: 6.393 |
|
- type: precision_at_100 |
|
value: 0.935 |
|
- type: precision_at_1000 |
|
value: 0.104 |
|
- type: precision_at_3 |
|
value: 13.663 |
|
- type: precision_at_5 |
|
value: 10.324 |
|
- type: recall_at_1 |
|
value: 20.842 |
|
- type: recall_at_10 |
|
value: 61.17 |
|
- type: recall_at_100 |
|
value: 88.518 |
|
- type: recall_at_1000 |
|
value: 97.993 |
|
- type: recall_at_3 |
|
value: 39.571 |
|
- type: recall_at_5 |
|
value: 49.653999999999996 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 |
|
metrics: |
|
- type: accuracy |
|
value: 93.46557227542178 |
|
- type: f1 |
|
value: 92.87345917772146 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 6299947a7777084cc2d4b64235bf7190381ce755 |
|
metrics: |
|
- type: accuracy |
|
value: 72.42134062927497 |
|
- type: f1 |
|
value: 55.03624810959269 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 70.3866845998655 |
|
- type: f1 |
|
value: 68.9674519872921 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 76.27774041694687 |
|
- type: f1 |
|
value: 76.72936190462792 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: dcefc037ef84348e49b0d29109e891c01067226b |
|
metrics: |
|
- type: v_measure |
|
value: 31.511745925773337 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc |
|
metrics: |
|
- type: v_measure |
|
value: 28.764235987575365 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 32.29353136386601 |
|
- type: mrr |
|
value: 33.536774455851685 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.702 |
|
- type: map_at_10 |
|
value: 13.642000000000001 |
|
- type: map_at_100 |
|
value: 17.503 |
|
- type: map_at_1000 |
|
value: 19.126 |
|
- type: map_at_3 |
|
value: 9.748 |
|
- type: map_at_5 |
|
value: 11.642 |
|
- type: mrr_at_1 |
|
value: 45.82 |
|
- type: mrr_at_10 |
|
value: 54.821 |
|
- type: mrr_at_100 |
|
value: 55.422000000000004 |
|
- type: mrr_at_1000 |
|
value: 55.452999999999996 |
|
- type: mrr_at_3 |
|
value: 52.373999999999995 |
|
- type: mrr_at_5 |
|
value: 53.937000000000005 |
|
- type: ndcg_at_1 |
|
value: 44.272 |
|
- type: ndcg_at_10 |
|
value: 36.213 |
|
- type: ndcg_at_100 |
|
value: 33.829 |
|
- type: ndcg_at_1000 |
|
value: 42.557 |
|
- type: ndcg_at_3 |
|
value: 40.814 |
|
- type: ndcg_at_5 |
|
value: 39.562000000000005 |
|
- type: precision_at_1 |
|
value: 45.511 |
|
- type: precision_at_10 |
|
value: 27.214 |
|
- type: precision_at_100 |
|
value: 8.941 |
|
- type: precision_at_1000 |
|
value: 2.1870000000000003 |
|
- type: precision_at_3 |
|
value: 37.874 |
|
- type: precision_at_5 |
|
value: 34.489 |
|
- type: recall_at_1 |
|
value: 5.702 |
|
- type: recall_at_10 |
|
value: 17.638 |
|
- type: recall_at_100 |
|
value: 34.419 |
|
- type: recall_at_1000 |
|
value: 66.41 |
|
- type: recall_at_3 |
|
value: 10.914 |
|
- type: recall_at_5 |
|
value: 14.032 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.567 |
|
- type: map_at_10 |
|
value: 45.01 |
|
- type: map_at_100 |
|
value: 46.091 |
|
- type: map_at_1000 |
|
value: 46.126 |
|
- type: map_at_3 |
|
value: 40.897 |
|
- type: map_at_5 |
|
value: 43.301 |
|
- type: mrr_at_1 |
|
value: 34.56 |
|
- type: mrr_at_10 |
|
value: 47.725 |
|
- type: mrr_at_100 |
|
value: 48.548 |
|
- type: mrr_at_1000 |
|
value: 48.571999999999996 |
|
- type: mrr_at_3 |
|
value: 44.361 |
|
- type: mrr_at_5 |
|
value: 46.351 |
|
- type: ndcg_at_1 |
|
value: 34.531 |
|
- type: ndcg_at_10 |
|
value: 52.410000000000004 |
|
- type: ndcg_at_100 |
|
value: 56.999 |
|
- type: ndcg_at_1000 |
|
value: 57.830999999999996 |
|
- type: ndcg_at_3 |
|
value: 44.734 |
|
- type: ndcg_at_5 |
|
value: 48.701 |
|
- type: precision_at_1 |
|
value: 34.531 |
|
- type: precision_at_10 |
|
value: 8.612 |
|
- type: precision_at_100 |
|
value: 1.118 |
|
- type: precision_at_1000 |
|
value: 0.12 |
|
- type: precision_at_3 |
|
value: 20.307 |
|
- type: precision_at_5 |
|
value: 14.519000000000002 |
|
- type: recall_at_1 |
|
value: 30.567 |
|
- type: recall_at_10 |
|
value: 72.238 |
|
- type: recall_at_100 |
|
value: 92.154 |
|
- type: recall_at_1000 |
|
value: 98.375 |
|
- type: recall_at_3 |
|
value: 52.437999999999995 |
|
- type: recall_at_5 |
|
value: 61.516999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 65.98 |
|
- type: map_at_10 |
|
value: 80.05600000000001 |
|
- type: map_at_100 |
|
value: 80.76299999999999 |
|
- type: map_at_1000 |
|
value: 80.786 |
|
- type: map_at_3 |
|
value: 76.848 |
|
- type: map_at_5 |
|
value: 78.854 |
|
- type: mrr_at_1 |
|
value: 75.86 |
|
- type: mrr_at_10 |
|
value: 83.397 |
|
- type: mrr_at_100 |
|
value: 83.555 |
|
- type: mrr_at_1000 |
|
value: 83.557 |
|
- type: mrr_at_3 |
|
value: 82.033 |
|
- type: mrr_at_5 |
|
value: 82.97 |
|
- type: ndcg_at_1 |
|
value: 75.88000000000001 |
|
- type: ndcg_at_10 |
|
value: 84.58099999999999 |
|
- type: ndcg_at_100 |
|
value: 86.151 |
|
- type: ndcg_at_1000 |
|
value: 86.315 |
|
- type: ndcg_at_3 |
|
value: 80.902 |
|
- type: ndcg_at_5 |
|
value: 82.953 |
|
- type: precision_at_1 |
|
value: 75.88000000000001 |
|
- type: precision_at_10 |
|
value: 12.986 |
|
- type: precision_at_100 |
|
value: 1.5110000000000001 |
|
- type: precision_at_1000 |
|
value: 0.156 |
|
- type: precision_at_3 |
|
value: 35.382999999999996 |
|
- type: precision_at_5 |
|
value: 23.555999999999997 |
|
- type: recall_at_1 |
|
value: 65.98 |
|
- type: recall_at_10 |
|
value: 93.716 |
|
- type: recall_at_100 |
|
value: 99.21799999999999 |
|
- type: recall_at_1000 |
|
value: 99.97 |
|
- type: recall_at_3 |
|
value: 83.551 |
|
- type: recall_at_5 |
|
value: 88.998 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: b2805658ae38990172679479369a78b86de8c390 |
|
metrics: |
|
- type: v_measure |
|
value: 40.45148482612238 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 |
|
metrics: |
|
- type: v_measure |
|
value: 55.749490673039126 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.903 |
|
- type: map_at_10 |
|
value: 11.926 |
|
- type: map_at_100 |
|
value: 13.916999999999998 |
|
- type: map_at_1000 |
|
value: 14.215 |
|
- type: map_at_3 |
|
value: 8.799999999999999 |
|
- type: map_at_5 |
|
value: 10.360999999999999 |
|
- type: mrr_at_1 |
|
value: 24.099999999999998 |
|
- type: mrr_at_10 |
|
value: 34.482 |
|
- type: mrr_at_100 |
|
value: 35.565999999999995 |
|
- type: mrr_at_1000 |
|
value: 35.619 |
|
- type: mrr_at_3 |
|
value: 31.433 |
|
- type: mrr_at_5 |
|
value: 33.243 |
|
- type: ndcg_at_1 |
|
value: 24.099999999999998 |
|
- type: ndcg_at_10 |
|
value: 19.872999999999998 |
|
- type: ndcg_at_100 |
|
value: 27.606 |
|
- type: ndcg_at_1000 |
|
value: 32.811 |
|
- type: ndcg_at_3 |
|
value: 19.497999999999998 |
|
- type: ndcg_at_5 |
|
value: 16.813 |
|
- type: precision_at_1 |
|
value: 24.099999999999998 |
|
- type: precision_at_10 |
|
value: 10.08 |
|
- type: precision_at_100 |
|
value: 2.122 |
|
- type: precision_at_1000 |
|
value: 0.337 |
|
- type: precision_at_3 |
|
value: 18.2 |
|
- type: precision_at_5 |
|
value: 14.62 |
|
- type: recall_at_1 |
|
value: 4.903 |
|
- type: recall_at_10 |
|
value: 20.438000000000002 |
|
- type: recall_at_100 |
|
value: 43.043 |
|
- type: recall_at_1000 |
|
value: 68.41000000000001 |
|
- type: recall_at_3 |
|
value: 11.068 |
|
- type: recall_at_5 |
|
value: 14.818000000000001 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.58086597995997 |
|
- type: cos_sim_spearman |
|
value: 69.63214182814991 |
|
- type: euclidean_pearson |
|
value: 72.76175489042691 |
|
- type: euclidean_spearman |
|
value: 67.84965161872971 |
|
- type: manhattan_pearson |
|
value: 72.73812689782592 |
|
- type: manhattan_spearman |
|
value: 67.83610439531277 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 75.13970861325006 |
|
- type: cos_sim_spearman |
|
value: 67.5020551515597 |
|
- type: euclidean_pearson |
|
value: 66.33415412418276 |
|
- type: euclidean_spearman |
|
value: 66.82145056673268 |
|
- type: manhattan_pearson |
|
value: 66.55489484006415 |
|
- type: manhattan_spearman |
|
value: 66.95147433279057 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.85850536483447 |
|
- type: cos_sim_spearman |
|
value: 79.1633350177206 |
|
- type: euclidean_pearson |
|
value: 72.74090561408477 |
|
- type: euclidean_spearman |
|
value: 73.57374448302961 |
|
- type: manhattan_pearson |
|
value: 72.92980654233226 |
|
- type: manhattan_spearman |
|
value: 73.72777155112588 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.51125593897028 |
|
- type: cos_sim_spearman |
|
value: 74.46048326701329 |
|
- type: euclidean_pearson |
|
value: 70.87726087052985 |
|
- type: euclidean_spearman |
|
value: 67.7721470654411 |
|
- type: manhattan_pearson |
|
value: 71.05892792135637 |
|
- type: manhattan_spearman |
|
value: 67.93472619779037 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.8299348880489 |
|
- type: cos_sim_spearman |
|
value: 84.47194637929275 |
|
- type: euclidean_pearson |
|
value: 78.68768462480418 |
|
- type: euclidean_spearman |
|
value: 79.80526323901917 |
|
- type: manhattan_pearson |
|
value: 78.6810718151946 |
|
- type: manhattan_spearman |
|
value: 79.7820584821254 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.99206664843005 |
|
- type: cos_sim_spearman |
|
value: 80.96089203722137 |
|
- type: euclidean_pearson |
|
value: 71.31216213716365 |
|
- type: euclidean_spearman |
|
value: 71.45258140049407 |
|
- type: manhattan_pearson |
|
value: 71.26140340402836 |
|
- type: manhattan_spearman |
|
value: 71.3896894666943 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.35697089594868 |
|
- type: cos_sim_spearman |
|
value: 87.78202647220289 |
|
- type: euclidean_pearson |
|
value: 84.20969668786667 |
|
- type: euclidean_spearman |
|
value: 83.91876425459982 |
|
- type: manhattan_pearson |
|
value: 84.24429755612542 |
|
- type: manhattan_spearman |
|
value: 83.98826315103398 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.06962775868384 |
|
- type: cos_sim_spearman |
|
value: 69.34889515492327 |
|
- type: euclidean_pearson |
|
value: 69.28108180412313 |
|
- type: euclidean_spearman |
|
value: 69.6437114853659 |
|
- type: manhattan_pearson |
|
value: 69.39974983734993 |
|
- type: manhattan_spearman |
|
value: 69.69057284482079 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: 8913289635987208e6e7c72789e4be2fe94b6abd |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.42553734213958 |
|
- type: cos_sim_spearman |
|
value: 81.38977341532744 |
|
- type: euclidean_pearson |
|
value: 76.47494587945522 |
|
- type: euclidean_spearman |
|
value: 75.92794860531089 |
|
- type: manhattan_pearson |
|
value: 76.4768777169467 |
|
- type: manhattan_spearman |
|
value: 75.9252673228599 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: 56a6d0140cf6356659e2a7c1413286a774468d44 |
|
metrics: |
|
- type: map |
|
value: 80.78825425914722 |
|
- type: mrr |
|
value: 94.60017197762296 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: a75ae049398addde9b70f6b268875f5cbce99089 |
|
metrics: |
|
- type: map_at_1 |
|
value: 60.633 |
|
- type: map_at_10 |
|
value: 70.197 |
|
- type: map_at_100 |
|
value: 70.758 |
|
- type: map_at_1000 |
|
value: 70.765 |
|
- type: map_at_3 |
|
value: 67.082 |
|
- type: map_at_5 |
|
value: 69.209 |
|
- type: mrr_at_1 |
|
value: 63.333 |
|
- type: mrr_at_10 |
|
value: 71.17 |
|
- type: mrr_at_100 |
|
value: 71.626 |
|
- type: mrr_at_1000 |
|
value: 71.633 |
|
- type: mrr_at_3 |
|
value: 68.833 |
|
- type: mrr_at_5 |
|
value: 70.6 |
|
- type: ndcg_at_1 |
|
value: 63.333 |
|
- type: ndcg_at_10 |
|
value: 74.697 |
|
- type: ndcg_at_100 |
|
value: 76.986 |
|
- type: ndcg_at_1000 |
|
value: 77.225 |
|
- type: ndcg_at_3 |
|
value: 69.527 |
|
- type: ndcg_at_5 |
|
value: 72.816 |
|
- type: precision_at_1 |
|
value: 63.333 |
|
- type: precision_at_10 |
|
value: 9.9 |
|
- type: precision_at_100 |
|
value: 1.103 |
|
- type: precision_at_1000 |
|
value: 0.11199999999999999 |
|
- type: precision_at_3 |
|
value: 26.889000000000003 |
|
- type: precision_at_5 |
|
value: 18.2 |
|
- type: recall_at_1 |
|
value: 60.633 |
|
- type: recall_at_10 |
|
value: 87.36699999999999 |
|
- type: recall_at_100 |
|
value: 97.333 |
|
- type: recall_at_1000 |
|
value: 99.333 |
|
- type: recall_at_3 |
|
value: 73.656 |
|
- type: recall_at_5 |
|
value: 82.083 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.76633663366337 |
|
- type: cos_sim_ap |
|
value: 93.84024096781063 |
|
- type: cos_sim_f1 |
|
value: 88.08080808080808 |
|
- type: cos_sim_precision |
|
value: 88.9795918367347 |
|
- type: cos_sim_recall |
|
value: 87.2 |
|
- type: dot_accuracy |
|
value: 99.46336633663367 |
|
- type: dot_ap |
|
value: 75.78127156965245 |
|
- type: dot_f1 |
|
value: 71.41403865717193 |
|
- type: dot_precision |
|
value: 72.67080745341616 |
|
- type: dot_recall |
|
value: 70.19999999999999 |
|
- type: euclidean_accuracy |
|
value: 99.67524752475248 |
|
- type: euclidean_ap |
|
value: 88.61274955249769 |
|
- type: euclidean_f1 |
|
value: 82.30852211434735 |
|
- type: euclidean_precision |
|
value: 89.34426229508196 |
|
- type: euclidean_recall |
|
value: 76.3 |
|
- type: manhattan_accuracy |
|
value: 99.67722772277227 |
|
- type: manhattan_ap |
|
value: 88.77516158012779 |
|
- type: manhattan_f1 |
|
value: 82.36536430834212 |
|
- type: manhattan_precision |
|
value: 87.24832214765101 |
|
- type: manhattan_recall |
|
value: 78.0 |
|
- type: max_accuracy |
|
value: 99.76633663366337 |
|
- type: max_ap |
|
value: 93.84024096781063 |
|
- type: max_f1 |
|
value: 88.08080808080808 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 |
|
metrics: |
|
- type: v_measure |
|
value: 59.20812266121527 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 |
|
metrics: |
|
- type: v_measure |
|
value: 33.954248554638056 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 |
|
metrics: |
|
- type: map |
|
value: 51.52800990025549 |
|
- type: mrr |
|
value: 52.360394915541974 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.737881131277356 |
|
- type: cos_sim_spearman |
|
value: 31.45979323917254 |
|
- type: dot_pearson |
|
value: 26.24686017962023 |
|
- type: dot_spearman |
|
value: 25.006732878791743 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.253 |
|
- type: map_at_10 |
|
value: 2.1399999999999997 |
|
- type: map_at_100 |
|
value: 12.873000000000001 |
|
- type: map_at_1000 |
|
value: 31.002000000000002 |
|
- type: map_at_3 |
|
value: 0.711 |
|
- type: map_at_5 |
|
value: 1.125 |
|
- type: mrr_at_1 |
|
value: 96.0 |
|
- type: mrr_at_10 |
|
value: 98.0 |
|
- type: mrr_at_100 |
|
value: 98.0 |
|
- type: mrr_at_1000 |
|
value: 98.0 |
|
- type: mrr_at_3 |
|
value: 98.0 |
|
- type: mrr_at_5 |
|
value: 98.0 |
|
- type: ndcg_at_1 |
|
value: 94.0 |
|
- type: ndcg_at_10 |
|
value: 84.881 |
|
- type: ndcg_at_100 |
|
value: 64.694 |
|
- type: ndcg_at_1000 |
|
value: 56.85 |
|
- type: ndcg_at_3 |
|
value: 90.061 |
|
- type: ndcg_at_5 |
|
value: 87.155 |
|
- type: precision_at_1 |
|
value: 96.0 |
|
- type: precision_at_10 |
|
value: 88.8 |
|
- type: precision_at_100 |
|
value: 65.7 |
|
- type: precision_at_1000 |
|
value: 25.080000000000002 |
|
- type: precision_at_3 |
|
value: 92.667 |
|
- type: precision_at_5 |
|
value: 90.0 |
|
- type: recall_at_1 |
|
value: 0.253 |
|
- type: recall_at_10 |
|
value: 2.292 |
|
- type: recall_at_100 |
|
value: 15.78 |
|
- type: recall_at_1000 |
|
value: 53.015 |
|
- type: recall_at_3 |
|
value: 0.7270000000000001 |
|
- type: recall_at_5 |
|
value: 1.162 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.116 |
|
- type: map_at_10 |
|
value: 9.625 |
|
- type: map_at_100 |
|
value: 15.641 |
|
- type: map_at_1000 |
|
value: 17.127 |
|
- type: map_at_3 |
|
value: 4.316 |
|
- type: map_at_5 |
|
value: 6.208 |
|
- type: mrr_at_1 |
|
value: 32.653 |
|
- type: mrr_at_10 |
|
value: 48.083999999999996 |
|
- type: mrr_at_100 |
|
value: 48.631 |
|
- type: mrr_at_1000 |
|
value: 48.649 |
|
- type: mrr_at_3 |
|
value: 42.857 |
|
- type: mrr_at_5 |
|
value: 46.224 |
|
- type: ndcg_at_1 |
|
value: 29.592000000000002 |
|
- type: ndcg_at_10 |
|
value: 25.430999999999997 |
|
- type: ndcg_at_100 |
|
value: 36.344 |
|
- type: ndcg_at_1000 |
|
value: 47.676 |
|
- type: ndcg_at_3 |
|
value: 26.144000000000002 |
|
- type: ndcg_at_5 |
|
value: 26.304 |
|
- type: precision_at_1 |
|
value: 32.653 |
|
- type: precision_at_10 |
|
value: 24.082 |
|
- type: precision_at_100 |
|
value: 7.714 |
|
- type: precision_at_1000 |
|
value: 1.5310000000000001 |
|
- type: precision_at_3 |
|
value: 26.531 |
|
- type: precision_at_5 |
|
value: 26.939 |
|
- type: recall_at_1 |
|
value: 2.116 |
|
- type: recall_at_10 |
|
value: 16.794 |
|
- type: recall_at_100 |
|
value: 47.452 |
|
- type: recall_at_1000 |
|
value: 82.312 |
|
- type: recall_at_3 |
|
value: 5.306 |
|
- type: recall_at_5 |
|
value: 9.306000000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de |
|
metrics: |
|
- type: accuracy |
|
value: 67.709 |
|
- type: ap |
|
value: 13.541535578501716 |
|
- type: f1 |
|
value: 52.569619919446794 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: 62146448f05be9e52a36b8ee9936447ea787eede |
|
metrics: |
|
- type: accuracy |
|
value: 56.850594227504246 |
|
- type: f1 |
|
value: 57.233377364910574 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 |
|
metrics: |
|
- type: v_measure |
|
value: 39.463722986090474 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 84.09131549144662 |
|
- type: cos_sim_ap |
|
value: 66.86677647503386 |
|
- type: cos_sim_f1 |
|
value: 62.94631710362049 |
|
- type: cos_sim_precision |
|
value: 59.73933649289099 |
|
- type: cos_sim_recall |
|
value: 66.51715039577837 |
|
- type: dot_accuracy |
|
value: 80.27656911247541 |
|
- type: dot_ap |
|
value: 54.291720398612085 |
|
- type: dot_f1 |
|
value: 54.77150537634409 |
|
- type: dot_precision |
|
value: 47.58660957571039 |
|
- type: dot_recall |
|
value: 64.5118733509235 |
|
- type: euclidean_accuracy |
|
value: 82.76211480002385 |
|
- type: euclidean_ap |
|
value: 62.430397690753296 |
|
- type: euclidean_f1 |
|
value: 59.191590539356774 |
|
- type: euclidean_precision |
|
value: 56.296119971435374 |
|
- type: euclidean_recall |
|
value: 62.401055408970976 |
|
- type: manhattan_accuracy |
|
value: 82.7561542588067 |
|
- type: manhattan_ap |
|
value: 62.41882051995577 |
|
- type: manhattan_f1 |
|
value: 59.32101002778785 |
|
- type: manhattan_precision |
|
value: 54.71361711611321 |
|
- type: manhattan_recall |
|
value: 64.77572559366754 |
|
- type: max_accuracy |
|
value: 84.09131549144662 |
|
- type: max_ap |
|
value: 66.86677647503386 |
|
- type: max_f1 |
|
value: 62.94631710362049 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.79574649745798 |
|
- type: cos_sim_ap |
|
value: 85.28960532524223 |
|
- type: cos_sim_f1 |
|
value: 77.98460043358001 |
|
- type: cos_sim_precision |
|
value: 75.78090948714224 |
|
- type: cos_sim_recall |
|
value: 80.32029565753002 |
|
- type: dot_accuracy |
|
value: 85.5939767920208 |
|
- type: dot_ap |
|
value: 76.14131706694056 |
|
- type: dot_f1 |
|
value: 72.70246298696868 |
|
- type: dot_precision |
|
value: 65.27012127894156 |
|
- type: dot_recall |
|
value: 82.04496458269172 |
|
- type: euclidean_accuracy |
|
value: 86.72332828812046 |
|
- type: euclidean_ap |
|
value: 80.84854809178995 |
|
- type: euclidean_f1 |
|
value: 72.47657499809551 |
|
- type: euclidean_precision |
|
value: 71.71717171717171 |
|
- type: euclidean_recall |
|
value: 73.25223283030489 |
|
- type: manhattan_accuracy |
|
value: 86.7563162184189 |
|
- type: manhattan_ap |
|
value: 80.87598895575626 |
|
- type: manhattan_f1 |
|
value: 72.54617892068092 |
|
- type: manhattan_precision |
|
value: 68.49268225960881 |
|
- type: manhattan_recall |
|
value: 77.10963966738528 |
|
- type: max_accuracy |
|
value: 88.79574649745798 |
|
- type: max_ap |
|
value: 85.28960532524223 |
|
- type: max_f1 |
|
value: 77.98460043358001 |
|
--- |
|
|
|
# SGPT-5.8B-weightedmean-msmarco-specb-bitfit |
|
|
|
## Usage |
|
|
|
For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt |
|
|
|
## Evaluation Results |
|
|
|
For eval results, refer to our paper: https://arxiv.org/abs/2202.08904 |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 249592 with parameters: |
|
``` |
|
{'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 10, |
|
"evaluation_steps": 0, |
|
"evaluator": "NoneType", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'transformers.optimization.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 5e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 1000, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTJModel |
|
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
```bibtex |
|
@article{muennighoff2022sgpt, |
|
title={SGPT: GPT Sentence Embeddings for Semantic Search}, |
|
author={Muennighoff, Niklas}, |
|
journal={arXiv preprint arXiv:2202.08904}, |
|
year={2022} |
|
} |
|
``` |
|
|