mt5-small-finetuned-research-papers_summarization

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4742
  • Rouge1: 37.9518
  • Rouge2: 19.3443
  • Rougel: 33.5815
  • Rougelsum: 33.5365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.1253 1.0 1000 2.7268 36.0557 17.6368 31.5759 31.5878
3.1271 2.0 2000 2.5913 35.7496 17.1898 31.363 31.3869
2.9616 3.0 3000 2.5313 36.6682 17.9617 32.3196 32.3058
2.8517 4.0 4000 2.5230 37.6535 18.6802 33.0408 33.0654
2.7771 5.0 5000 2.5006 37.9256 19.0955 33.3906 33.3775
2.7229 6.0 6000 2.4774 38.0941 19.3515 33.5769 33.5549
2.6835 7.0 7000 2.4764 38.0013 19.3891 33.57 33.5473
2.6559 8.0 8000 2.4742 37.9518 19.3443 33.5815 33.5365

Framework versions

  • Transformers 4.50.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Mug3n24/mt5-small-finetuned-research-papers_summarization

Base model

google/mt5-small
Finetuned
(453)
this model