mt5-small-finetuned-research-papers_summarization
This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4742
- Rouge1: 37.9518
- Rouge2: 19.3443
- Rougel: 33.5815
- Rougelsum: 33.5365
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.1253 | 1.0 | 1000 | 2.7268 | 36.0557 | 17.6368 | 31.5759 | 31.5878 |
3.1271 | 2.0 | 2000 | 2.5913 | 35.7496 | 17.1898 | 31.363 | 31.3869 |
2.9616 | 3.0 | 3000 | 2.5313 | 36.6682 | 17.9617 | 32.3196 | 32.3058 |
2.8517 | 4.0 | 4000 | 2.5230 | 37.6535 | 18.6802 | 33.0408 | 33.0654 |
2.7771 | 5.0 | 5000 | 2.5006 | 37.9256 | 19.0955 | 33.3906 | 33.3775 |
2.7229 | 6.0 | 6000 | 2.4774 | 38.0941 | 19.3515 | 33.5769 | 33.5549 |
2.6835 | 7.0 | 7000 | 2.4764 | 38.0013 | 19.3891 | 33.57 | 33.5473 |
2.6559 | 8.0 | 8000 | 2.4742 | 37.9518 | 19.3443 | 33.5815 | 33.5365 |
Framework versions
- Transformers 4.50.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Mug3n24/mt5-small-finetuned-research-papers_summarization
Base model
google/mt5-small