FairyR1-32B GGUF Models
Model Generation Details
This model was generated using llama.cpp at commit f5cd27b7
.
Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)
Our latest quantization method introduces precision-adaptive quantization for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on Llama-3-8B. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
Benchmark Context
All tests conducted on Llama-3-8B-Instruct using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations
Method
- Dynamic Precision Allocation:
- First/Last 25% of layers → IQ4_XS (selected layers)
- Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
- Critical Component Protection:
- Embeddings/output layers use Q5_K
- Reduces error propagation by 38% vs standard 1-2bit
Quantization Performance Comparison (Llama-3-8B)
Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
---|---|---|---|---|---|---|---|---|
IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
Key:
- PPL = Perplexity (lower is better)
- Δ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead
Key Improvements:
- 🔥 IQ1_M shows massive 43.9% perplexity reduction (27.46 → 15.41)
- 🚀 IQ2_S cuts perplexity by 36.9% while adding only 0.2GB
- ⚡ IQ1_S maintains 39.7% better accuracy despite 1-bit quantization
Tradeoffs:
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)
When to Use These Models
📌 Fitting models into GPU VRAM
✔ Memory-constrained deployments
✔ Cpu and Edge Devices where 1-2bit errors can be tolerated
✔ Research into ultra-low-bit quantization
Choosing the Right Model Format
Selecting the correct model format depends on your hardware capabilities and memory constraints.
BF16 (Brain Float 16) – Use if BF16 acceleration is available
- A 16-bit floating-point format designed for faster computation while retaining good precision.
- Provides similar dynamic range as FP32 but with lower memory usage.
- Recommended if your hardware supports BF16 acceleration (check your device's specs).
- Ideal for high-performance inference with reduced memory footprint compared to FP32.
📌 Use BF16 if:
✔ Your hardware has native BF16 support (e.g., newer GPUs, TPUs).
✔ You want higher precision while saving memory.
✔ You plan to requantize the model into another format.
📌 Avoid BF16 if:
❌ Your hardware does not support BF16 (it may fall back to FP32 and run slower).
❌ You need compatibility with older devices that lack BF16 optimization.
F16 (Float 16) – More widely supported than BF16
- A 16-bit floating-point high precision but with less of range of values than BF16.
- Works on most devices with FP16 acceleration support (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
📌 Use F16 if:
✔ Your hardware supports FP16 but not BF16.
✔ You need a balance between speed, memory usage, and accuracy.
✔ You are running on a GPU or another device optimized for FP16 computations.
📌 Avoid F16 if:
❌ Your device lacks native FP16 support (it may run slower than expected).
❌ You have memory limitations.
Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- Lower-bit models (Q4_K) → Best for minimal memory usage, may have lower precision.
- Higher-bit models (Q6_K, Q8_0) → Better accuracy, requires more memory.
📌 Use Quantized Models if:
✔ You are running inference on a CPU and need an optimized model.
✔ Your device has low VRAM and cannot load full-precision models.
✔ You want to reduce memory footprint while keeping reasonable accuracy.
📌 Avoid Quantized Models if:
❌ You need maximum accuracy (full-precision models are better for this).
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)
These models are optimized for extreme memory efficiency, making them ideal for low-power devices or large-scale deployments where memory is a critical constraint.
IQ3_XS: Ultra-low-bit quantization (3-bit) with extreme memory efficiency.
- Use case: Best for ultra-low-memory devices where even Q4_K is too large.
- Trade-off: Lower accuracy compared to higher-bit quantizations.
IQ3_S: Small block size for maximum memory efficiency.
- Use case: Best for low-memory devices where IQ3_XS is too aggressive.
IQ3_M: Medium block size for better accuracy than IQ3_S.
- Use case: Suitable for low-memory devices where IQ3_S is too limiting.
Q4_K: 4-bit quantization with block-wise optimization for better accuracy.
- Use case: Best for low-memory devices where Q6_K is too large.
Q4_0: Pure 4-bit quantization, optimized for ARM devices.
- Use case: Best for ARM-based devices or low-memory environments.
Summary Table: Model Format Selection
Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
---|---|---|---|---|
BF16 | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
F16 | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
Q4_K | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
Q6_K | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
Q8_0 | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
IQ3_XS | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
Q4_0 | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
Included Files & Details
FairyR1-32B-bf16.gguf
- Model weights preserved in BF16.
- Use this if you want to requantize the model into a different format.
- Best if your device supports BF16 acceleration.
FairyR1-32B-f16.gguf
- Model weights stored in F16.
- Use if your device supports FP16, especially if BF16 is not available.
FairyR1-32B-bf16-q8_0.gguf
- Output & embeddings remain in BF16.
- All other layers quantized to Q8_0.
- Use if your device supports BF16 and you want a quantized version.
FairyR1-32B-f16-q8_0.gguf
- Output & embeddings remain in F16.
- All other layers quantized to Q8_0.
FairyR1-32B-q4_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q4_K.
- Good for CPU inference with limited memory.
FairyR1-32B-q4_k_s.gguf
- Smallest Q4_K variant, using less memory at the cost of accuracy.
- Best for very low-memory setups.
FairyR1-32B-q6_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q6_K .
FairyR1-32B-q8_0.gguf
- Fully Q8 quantized model for better accuracy.
- Requires more memory but offers higher precision.
FairyR1-32B-iq3_xs.gguf
- IQ3_XS quantization, optimized for extreme memory efficiency.
- Best for ultra-low-memory devices.
FairyR1-32B-iq3_m.gguf
- IQ3_M quantization, offering a medium block size for better accuracy.
- Suitable for low-memory devices.
FairyR1-32B-q4_0.gguf
- Pure Q4_0 quantization, optimized for ARM devices.
- Best for low-memory environments.
- Prefer IQ4_NL for better accuracy.
🚀 If you find these models useful
❤ Please click "Like" if you find this useful!
Help me test my AI-Powered Network Monitor Assistant with quantum-ready security checks:
👉 Free Network Monitor
💬 How to test:
Choose an AI assistant type:
TurboLLM
(GPT-4o-mini)HugLLM
(Hugginface Open-source)TestLLM
(Experimental CPU-only)
What I’m Testing
I’m pushing the limits of small open-source models for AI network monitoring, specifically:
- Function calling against live network services
- How small can a model go while still handling:
- Automated Nmap scans
- Quantum-readiness checks
- Network Monitoring tasks
🟡 TestLLM – Current experimental model (llama.cpp on 2 CPU threads):
- ✅ Zero-configuration setup
- ⏳ 30s load time (slow inference but no API costs)
- 🔧 Help wanted! If you’re into edge-device AI, let’s collaborate!
Other Assistants
🟢 TurboLLM – Uses gpt-4o-mini for:
- Create custom cmd processors to run .net code on Free Network Monitor Agents
- Real-time network diagnostics and monitoring
- Security Audits
- Penetration testing (Nmap/Metasploit)
- 🔑 Get more tokens by logging in or downloading our Free Network Monitor Agent with integrated AI Assistant
🔵 HugLLM – Latest Open-source models:
- 🌐 Runs on Hugging Face Inference API
💡 Example commands to you could test:
"Give me info on my websites SSL certificate"
"Check if my server is using quantum safe encyption for communication"
"Run a comprehensive security audit on my server"
- '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
Welcome to FairyR1-32B created by PKU-DS-LAB!
Benchmark | DeepSeek-R1-671B | DeepSeek-R1-Distill-Qwen-32B | FairyR1-32B (PKU) |
---|---|---|---|
AIME 2024 (Math) | 79.8 | 72.6 | 80.4 |
AIME 2025 (Math) | 70.0 | 52.9 | 75.6 |
LiveCodeBench (Code) | 65.9 | 57.2 | 67.7 |
GPQA-Diamond (Sci-QA) | 71.5 | 62.1 | 60.0 |
Introduction
FairyR1-32B, a highly efficient large-language-model (LLM) that matches or exceeds larger models on select tasks despite using only ~5% of their parameters. Built atop the DeepSeek-R1-Distill-Qwen-32B base, FairyR1-32B leverages a novel “distill-and-merge” pipeline—combining task-focused fine-tuning with model-merging techniques to deliver competitive performance with drastically reduced size and inference cost. This project was funded by NSFC, Grant 624B2005.
Model Details
The FairyR1 model represents a further exploration of our earlier work TinyR1, retaining the core “Branch-Merge Distillation” approach while introducing refinements in data processing and model architecture.
In this effort, we overhauled the distillation data pipeline: raw examples from datasets such as AIMO/NuminaMath-1.5 for mathematics and OpenThoughts-114k for code were first passed through multiple 'teacher' models to generate candidate answers. These candidates were then carefully selected, restructured, and refined, especially for the chain-of-thought(CoT). Subsequently, we applied multi-stage filtering—including automated correctness checks for math problems and length-based selection (2K–8K tokens for math samples, 4K–8K tokens for code samples). This yielded two focused training sets of roughly 6.6K math examples and 3.8K code examples.
On the modeling side, rather than training three separate specialists as before, we limited our scope to just two domain experts (math and code), each trained independently under identical hyperparameters (e.g., learning rate and batch size) for about five epochs. We then fused these experts into a single 32B-parameter model using the AcreeFusion tool. By streamlining both the data distillation workflow and the specialist-model merging process, FairyR1 achieves task-competitive results with only a fraction of the parameters and computational cost of much larger models.
Result Analysis and Key Contributions:
From the test results, FairyR1 scored slightly higher than DeepSeek-R1-671B on the AIME 2025 and LiveCodeBench benchmarks, and performed comparably on AIME 2024.
These results indicate that, by building on the DeepSeek‑R1‑Distill‑Qwen‑32B base and applying targeted techniques, FairyR1 achieves comparable or slightly superior performance in mathematical and programming domains using only about 5% of the parameter count of much larger models, although performance gaps may remain in other fields such as scientific question answering.
This work demonstrates the feasibility of significantly reducing model size and potential inference cost through optimized data processing and model fusion techniques while maintaining strong task-specific performance.
Model Description
- Developed by: PKU-DS-LAB
- Model type: Reasoning Model
- Language(s) (NLP): English, Chinese
- License: apache-2.0
- Finetuned from model: DeepSeek-R1-Distill-Qwen-32B
Training Data
- Math: 6.6k CoT trajectories from AI-MO/NuminaMath-1.5, default subset
- Coding: 3.8k CoT trajectories from open-thoughts/OpenThoughts-114k, coding subset
Hardware Utilization
- Hardware Type: 32 × NVIDIA-H100
- Hours used(Math): 2.5h
- Hours used(Coding): 1.5h
- Model Merging: about 40min on CPU, no GPU needed.
Evaluation Set
- AIME 2024/2025 (math): We evaluate 32 times and report the average accuracy. AIME 2024 contains 30 problems. AIME 2025 consists of Part I and Part II, with a total of 30 questions.
- LiveCodeBench (code): We evaluate 8 times and report the average accuracy. The dataset version is "release_v5" (date range: 2024-08-01 to 2025-02-01), consisting of 279 problems.
- GPQA-Diamond (Sci-QA): We evaluate 8 times and report the average accuracy. The dataset consists of 198 problems.
FairyR1 series Team Members:
Leading By:
Tong Yang
Core Contributors:
Wang Li; Junting Zhou; Wenrui Liu; Yilun Yao; Rongle Wang
Model Card Contact
For more details, please contact: [email protected]
- Downloads last month
- 992
1-bit
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
Model tree for Mungert/FairyR1-32B-GGUF
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B