Midm-2.0-Base-Instruct GGUF Models

Model Generation Details

This model was generated using llama.cpp at commit 21c02174.


Quantization Beyond the IMatrix

I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.

In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the --tensor-type option in llama.cpp to manually "bump" important layers to higher precision. You can see the implementation here:
πŸ‘‰ Layer bumping with llama.cpp

While this does increase model file size, it significantly improves precision for a given quantization level.

I'd love your feedbackβ€”have you tried this? How does it perform for you?


Click here to get info on choosing the right GGUF model format


Mi:dm 2.0 Base

πŸ€— Mi:dm 2.0 Models | πŸ“œ Mi:dm 2.0 Technical Report | πŸ“• Mi:dm 2.0 Technical Blog*

*To be released soon


News πŸ“’

  • πŸ”œ (Coming Soon!) GGUF format model files will be available soon for easier local deployment.
  • ⚑️2025/07/04: Released Mi:dm 2.0 Model collection on Hugging FaceπŸ€—.

Table of Contents



Overview

Mi:dm 2.0

Mi:dm 2.0 is a "Korea-centric AI" model developed using KT's proprietary technology. The term "Korea-centric AI" refers to a model that deeply internalizes the unique values, cognitive frameworks, and commonsense reasoning inherent to Korean society. It goes beyond simply processing or generating Korean textβ€”it reflects a deeper understanding of the socio-cultural norms and values that define Korean society.

Mi:dm 2.0 is released in two versions:

  • Mi:dm 2.0 Base
    An 11.5B parameter dense model designed to balance model size and performance.
    It extends an 8B-scale model by applying the Depth-up Scaling (DuS) method, making it suitable for real-world applications that require both performance and versatility.

  • Mi:dm 2.0 Mini
    A lightweight 2.3B parameter dense model optimized for on-device environments and systems with limited GPU resources.
    It was derived from the Base model through pruning and distillation to enable compact deployment.

Neither the pre-training nor the post-training data includes KT users' data.


Quickstart

Here is the code snippet to run conversational inference with the model:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

model_name = "K-intelligence/Midm-2.0-Base-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generation_config = GenerationConfig.from_pretrained(model_name)

prompt = "KT에 λŒ€ν•΄ μ†Œκ°œν•΄μ€˜"

# message for inference
messages = [
    {"role": "system", 
     "content": "Mi:dm(λ―Ώ:음)은 KTμ—μ„œ κ°œλ°œν•œ AI 기반 μ–΄μ‹œμŠ€ν„΄νŠΈμ΄λ‹€."},
    {"role": "user", "content": prompt}
]

input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt"
)

output = model.generate(
    input_ids.to("cuda"),
    generation_config=generation_config,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=128,
    do_sample=False,
)
print(tokenizer.decode(output[0]))

The transformers library should be version 4.45.0 or higher.


Evaluation

Korean

Model Society & Culture General Knowledge Instruction Following
K-Refer* K-Refer-Hard* Ko-Sovereign* HAERAE Avg. KMMLU Ko-Sovereign* Avg. Ko-IFEval Ko-MTBench Avg.
Qwen3-4B 53.6 42.9 35.8 50.6 45.7 50.6 42.5 46.5 75.9 63.0 69.4
Exaone-3.5-2.4B-inst 64.0 67.1 44.4 61.3 59.2 43.5 42.4 43.0 65.4 74.0 68.9
Mi:dm 2.0-Mini-inst 66.4 61.4 36.7 70.8 58.8 45.1 42.4 43.8 73.3 74.0 73.6
Qwen3-14B 72.4 65.7 49.8 68.4 64.1 55.4 54.7 55.1 83.6 71 77.3
Llama-3.1-8B-inst 43.2 36.4 33.8 49.5 40.7 33.0 36.7 34.8 60.1 57 58.5
Exaone-3.5-7.8B-inst 71.6 69.3 46.9 72.9 65.2 52.6 45.6 49.1 69.1 79.6 74.4
Mi:dm 2.0-Base-inst 89.6 86.4 56.3 81.5 78.4 57.3 58.0 57.7 82 89.7 85.9
Model Comprehension Reasoning
K-Prag* K-Refer-Hard* Ko-Best Ko-Sovereign* Avg. Ko-Winogrande Ko-Best LogicKor HRM8K Avg.
Qwen3-4B 73.9 56.7 91.5 43.5 66.6 67.5 69.2 5.6 56.7 43.8
Exaone-3.5-2.4B-inst 68.7 58.5 87.2 38.0 62.5 60.3 64.1 7.4 38.5 36.7
Mi:dm 2.0-Mini-inst 69.5 55.4 80.5 42.5 61.9 61.7 64.5 7.7 39.9 37.4
Qwen3-14B 86.7 74.0 93.9 52.0 76.8 77.2 75.4 6.4 64.5 48.8
Llama-3.1-8B-inst 59.9 48.6 77.4 31.5 51.5 40.1 26.0 2.4 30.9 19.8
Exaone-3.5-7.8B-inst 73.5 61.9 92.0 44.0 67.2 64.6 60.3 8.6 49.7 39.5
Mi:dm 2.0-Base-inst 86.5 70.8 95.2 53.0 76.1 75.1 73.0 8.6 52.9 44.8

* indicates KT proprietary evaluation resources.


English

Model Instruction Reasoning Math Coding General Knowledge
IFEval BBH GPQA MuSR Avg. GSM8K MBPP+ MMLU-pro MMLU Avg.
Qwen3-4B 79.7 79.0 39.8 58.5 59.1 90.4 62.4 - 73.3 73.3
Exaone-3.5-2.4B-inst 81.1 46.4 28.1 49.7 41.4 82.5 59.8 - 59.5 59.5
Mi:dm 2.0-Mini-inst 73.6 44.5 26.6 51.7 40.9 83.1 60.9 - 56.5 56.5
 
Qwen3-14B 83.9 83.4 49.8 57.7 63.6 88.0 73.4 70.5 82.7 76.6
Llama-3.1-8B-inst 79.9 60.3 21.6 50.3 44.1 81.2 81.8 47.6 70.7 59.2
Exaone-3.5-7.8B-inst 83.6 50.1 33.1 51.2 44.8 81.1 79.4 40.7 69.0 54.8
Mi:dm 2.0-Base-inst 84.0 77.7 33.5 51.9 54.4 91.6 77.5 53.3 73.7 63.5

Usage

Run on Friendli.AI

You can try our model immediately via Friendli.AI. Simply click Deploy and then Friendli Endpoints.

Please note that a login to Friendli.AI is required after your fifth chat interaction.

Left Image Right Image

Run on Your Local Machine

We provide a detailed description about running Mi:dm 2.0 on your local machine using llama.cpp, LM Studio, and Ollama. Please check our github for more information

Deployment

To serve Mi:dm 2.0 using vLLM(>=0.8.0) with an OpenAI-compatible API:

vllm serve K-intelligence/Midm-2.0-Base-Instruct

Tutorials

To help our end-users easily use Mi:dm 2.0, we have provided comprehensive tutorials on github.



More Information

Limitation

  • The training data for both Mi:dm 2.0 models consists primarily of English and Korean. Understanding and generation in other languages are not guaranteed.

  • The model is not guaranteed to provide reliable advice in fields that require professional expertise, such as law, medicine, or finance.

  • Researchers have made efforts to exclude unethical content from the training data β€” such as profanity, slurs, bias, and discriminatory language. However, despite these efforts, the model may still produce inappropriate expressions or factual inaccuracies.

License

Mi:dm 2.0 is licensed under the MIT License.

Contact

Mi:dm 2.0 Technical Inquiries: [email protected]



πŸš€ If you find these models useful

Help me test my AI-Powered Quantum Network Monitor Assistant with quantum-ready security checks:

πŸ‘‰ Quantum Network Monitor

The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : Source Code Quantum Network Monitor. You will also find the code I use to quantize the models if you want to do it yourself GGUFModelBuilder

πŸ’¬ How to test:
Choose an AI assistant type:

  • TurboLLM (GPT-4.1-mini)
  • HugLLM (Hugginface Open-source models)
  • TestLLM (Experimental CPU-only)

What I’m Testing

I’m pushing the limits of small open-source models for AI network monitoring, specifically:

  • Function calling against live network services
  • How small can a model go while still handling:
    • Automated Nmap security scans
    • Quantum-readiness checks
    • Network Monitoring tasks

🟑 TestLLM – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):

  • βœ… Zero-configuration setup
  • ⏳ 30s load time (slow inference but no API costs) . No token limited as the cost is low.
  • πŸ”§ Help wanted! If you’re into edge-device AI, let’s collaborate!

Other Assistants

🟒 TurboLLM – Uses gpt-4.1-mini :

  • **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
  • Create custom cmd processors to run .net code on Quantum Network Monitor Agents
  • Real-time network diagnostics and monitoring
  • Security Audits
  • Penetration testing (Nmap/Metasploit)

πŸ”΅ HugLLM – Latest Open-source models:

  • 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.

πŸ’‘ Example commands you could test:

  1. "Give me info on my websites SSL certificate"
  2. "Check if my server is using quantum safe encyption for communication"
  3. "Run a comprehensive security audit on my server"
  4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code on. This is a very flexible and powerful feature. Use with caution!

Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAIβ€”all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is open source. Feel free to use whatever you find helpful.

If you appreciate the work, please consider buying me a coffee β˜•. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊

Downloads last month
1,957
GGUF
Model size
11.5B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support