granite-3.2-8b-instruct GGUF Models
Model Generation Details
This model was generated using llama.cpp at commit 5dd942de
.
Quantization Beyond the IMatrix
I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the --tensor-type
option in llama.cpp
to manually "bump" important layers to higher precision. You can see the implementation here:
👉 Layer bumping with llama.cpp
While this does increase model file size, it significantly improves precision for a given quantization level.
I'd love your feedback—have you tried this? How does it perform for you?
Click here to get info on choosing the right GGUF model format
Granite-3.2-8B-Instruct
Model Summary: Granite-3.2-8B-Instruct is an 8-billion-parameter, long-context AI model fine-tuned for thinking capabilities. Built on top of Granite-3.1-8B-Instruct, it has been trained using a mix of permissively licensed open-source datasets and internally generated synthetic data designed for reasoning tasks. The model allows controllability of its thinking capability, ensuring it is applied only when required.
- Developers: Granite Team, IBM
- Website: Granite Docs
- Release Date: February 26th, 2025
- License: Apache 2.0
Supported Languages: English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages.
Intended Use: This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications.
Capabilities
- Thinking
- Summarization
- Text classification
- Text extraction
- Question-answering
- Retrieval Augmented Generation (RAG)
- Code related tasks
- Function-calling tasks
- Multilingual dialog use cases
- Long-context tasks including long document/meeting summarization, long document QA, etc.
Generation: This is a simple example of how to use Granite-3.2-8B-Instruct model.
Install the following libraries:
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
Then, copy the snippet from the section that is relevant for your use case.
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
import torch
model_path="ibm-granite/granite-3.2-8b-instruct"
device="cuda"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device,
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(
model_path
)
conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}]
input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)
set_seed(42)
output = model.generate(
**input_ids,
max_new_tokens=8192,
)
prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
print(prediction)
Example Outputs
- thinking=True
Here is my thought process:
1. We know we start with 10 liters of a 30% acid solution, so there's 3 liters of pure acid in it (10 liters * 0.3).
2. We need to determine how much of the 70% acid solution to add such that the final mixture is 50% acid.
3. Let's say x liters of the 70% acid solution are added. This will contribute 0.7x liters of pure acid.
4. The total volume of the new mixture will be 10 + x liters, and the total amount of pure acid will be 3 + 0.7x liters.
5. We need to set up an equation where (3 + 0.7x) / (10 + x) = 0.5 (since we want a 50% acid mixture).
6. Solving this equation for x will give us the volume of 70% solution needed.
Here is my response:
To solve this, we need to set up an equation based on the concentration of acid before and after mixing.
1. **Initial Acid Content**:
- We start with 10 liters of a 30% acid solution.
- Pure acid in this = 10 * 0.3 = 3 liters.
2. **Variable for Addition**:
- Let x be the liters of 70% acid solution to be added.
- Pure acid in x liters of 70% solution = 0.7x liters.
3. **Final Mixture Concentration**:
- Total volume of mixture = 10 + x liters.
- Total pure acid in the mixture = 3 (from initial solution) + 0.7x (from added solution).
4. **Setting up the equation for 50% acid concentration**:
- We require that the ratio of pure acid to total volume is 0.5 (50%).
- Therefore, the equation is:
\[
\frac{3 + 0.7x}{10 + x} = 0.5
\]
5. **Solving the equation**:
Multiply both sides by (10 + x) to clear the fraction:
\[
3 + 0.7x = 0.5(10 + x)
\]
Expanding the right side:
\[
3 + 0.7x = 5 + 0.5x
\]
Subtract 0.5x from both sides:
\[
3 + 0.2x = 5
\]
Subtract 3 from both sides:
\[
0.2x = 2
\]
Divide by 0.2:
\[
x = 10
\]
So, 10 liters of the 70% acid solution must be added to the initial 10 liters of 30% solution to get a 50% acid mixture.
Let's verify:
- Initial acid: 3 liters
- Acid from added solution: 0.7 * 10 = 7 liters
- Total acid: 3 + 7 = 10 liters
- Total volume: 10 + 10 = 20 liters
- Acid percentage: \(\frac{10}{20} = 0.5 = 50\%\)
This confirms our solution.
Final answer: 10 liters of 70% acid solution should be added.
- thinking=False
Let's denote the amount of 70% acid solution to be added as x liters.
We start with 10 liters of a 30% acid solution, which means there are 0.3 * 10 = 3 liters of pure acid in it.
We want to end up with a 50% acid solution after adding x liters of 70% acid solution. The total volume of the mixture will be 10 + x liters, and we want half of this volume to be pure acid.
So, the amount of pure acid in the final mixture should be 0.5 * (10 + x) liters.
The amount of pure acid in the final mixture comes from two sources: the original 30% solution and the added 70% solution. So, we can set up the following equation:
3 (from the original solution) + 0.7x (from the added solution) = 0.5 * (10 + x)
Now, let's solve for x:
3 + 0.7x = 5 + 0.5x
0.7x - 0.5x = 5 - 3
0.2x = 2
x = 2 / 0.2
x = 10
So, you need to add 10 liters of a 70% acid solution to the 10 liters of a 30% acid solution to get a 50% acid mixture.
Evaluation Results:
Models | ArenaHard | Alpaca-Eval-2 | MMLU | PopQA | TruthfulQA | BigBenchHard | DROP | GSM8K | HumanEval | HumanEval+ | IFEval | AttaQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Llama-3.1-8B-Instruct | 36.43 | 27.22 | 69.15 | 28.79 | 52.79 | 72.66 | 61.48 | 83.24 | 85.32 | 80.15 | 79.10 | 83.43 |
DeepSeek-R1-Distill-Llama-8B | 17.17 | 21.85 | 45.80 | 13.25 | 47.43 | 65.71 | 44.46 | 72.18 | 67.54 | 62.91 | 66.50 | 42.87 |
Qwen-2.5-7B-Instruct | 25.44 | 30.34 | 74.30 | 18.12 | 63.06 | 70.40 | 54.71 | 84.46 | 93.35 | 89.91 | 74.90 | 81.90 |
DeepSeek-R1-Distill-Qwen-7B | 10.36 | 15.35 | 50.72 | 9.94 | 47.14 | 65.04 | 42.76 | 78.47 | 79.89 | 78.43 | 59.10 | 42.45 |
Granite-3.1-8B-Instruct | 37.58 | 30.34 | 66.77 | 28.7 | 65.84 | 68.55 | 50.78 | 79.15 | 89.63 | 85.79 | 73.20 | 85.73 |
Granite-3.1-2B-Instruct | 23.3 | 27.17 | 57.11 | 20.55 | 59.79 | 54.46 | 18.68 | 67.55 | 79.45 | 75.26 | 63.59 | 84.7 |
Granite-3.2-2B-Instruct | 24.86 | 34.51 | 57.18 | 20.56 | 59.8 | 52.27 | 21.12 | 67.02 | 80.13 | 73.39 | 61.55 | 83.23 |
Granite-3.2-8B-Instruct | 55.25 | 61.19 | 66.79 | 28.04 | 66.92 | 64.77 | 50.95 | 81.65 | 89.35 | 85.72 | 74.31 | 85.42 |
Training Data: Overall, our training data is largely comprised of two key sources: (1) publicly available datasets with permissive license, (2) internal synthetically generated data targeted to enhance reasoning capabilites.
Infrastructure: We train Granite-3.2-8B-Instruct using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
Ethical Considerations and Limitations: Granite-3.2-8B-Instruct builds upon Granite-3.1-8B-Instruct, leveraging both permissively licensed open-source and select proprietary data for enhanced performance. Since it inherits its foundation from the previous model, all ethical considerations and limitations applicable to Granite-3.1-8B-Instruct remain relevant.
Resources
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
🚀 If you find these models useful
Help me test my AI-Powered Quantum Network Monitor Assistant with quantum-ready security checks:
The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : Source Code Quantum Network Monitor. You will also find the code I use to quantize the models if you want to do it yourself GGUFModelBuilder
💬 How to test:
Choose an AI assistant type:
TurboLLM
(GPT-4.1-mini)HugLLM
(Hugginface Open-source models)TestLLM
(Experimental CPU-only)
What I’m Testing
I’m pushing the limits of small open-source models for AI network monitoring, specifically:
- Function calling against live network services
- How small can a model go while still handling:
- Automated Nmap security scans
- Quantum-readiness checks
- Network Monitoring tasks
🟡 TestLLM – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
- ✅ Zero-configuration setup
- ⏳ 30s load time (slow inference but no API costs) . No token limited as the cost is low.
- 🔧 Help wanted! If you’re into edge-device AI, let’s collaborate!
Other Assistants
🟢 TurboLLM – Uses gpt-4.1-mini :
- **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
- Create custom cmd processors to run .net code on Quantum Network Monitor Agents
- Real-time network diagnostics and monitoring
- Security Audits
- Penetration testing (Nmap/Metasploit)
🔵 HugLLM – Latest Open-source models:
- 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
💡 Example commands you could test:
"Give me info on my websites SSL certificate"
"Check if my server is using quantum safe encyption for communication"
"Run a comprehensive security audit on my server"
- '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code on. This is a very flexible and powerful feature. Use with caution!
Final Word
I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is open source. Feel free to use whatever you find helpful.
If you appreciate the work, please consider buying me a coffee ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
I'm also open to job opportunities or sponsorship.
Thank you! 😊
- Downloads last month
- 1,185
1-bit
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
Model tree for Mungert/granite-3.2-8b-instruct-GGUF
Base model
ibm-granite/granite-3.1-8b-base