Muniekstache's picture
Update README.md
a1c1b6a verified
---
license: mit
language:
- en
- nl
tags:
- machine-translation
- low-resource
- creativity
library_name: transformers
pipeline_tag: translation
model-index:
- name: EN-DE EN-NL Creative
results:
- task:
type: machine-translation
name: Translation
dataset:
name: Dutch Parallel Corpus + OpenSubtitles (creative subset)
type: Helsinki-NLP/open_subtitles
split: test
metrics:
- type: sacrebleu
name: SacreBLEU
value: 18.35
greater_is_better: true
---
# EN-DE parent ➜ EN-NL fine-tuned on creative corpus
**Authors:** Niek Holter
**Thesis:** “Transferring Creativity”
## Summary
This model starts from Helsinki-NLP’s MarianMT `opus-mt-en-de` and is fine-tuned on a 10k-sentence **creative** English–Dutch corpus (fiction + subtitles).
It is one of four systems trained for my bachelor’s thesis to study how transfer-learning settings affect MT creativity.
| Parent model | Fine-tune data | BLEU | COMET | Transformed Creativity Score |
|-------------|----------------|------|-------|------------------|
| en-de | Creative | 18.4 | 0.662 | 0.42 |
## Intended use
* Research on creative MT and low-resource transfer learning
## Training details
* Hardware  : NVIDIA GTX 1070 (CUDA 12.1)
* Epochs : Early-stopped ≤ 200 (patience 5)
* LR / batch : 2 e-5 / 16
* Script : [`finetuning.py`](./finetuning.py)
* Env : [`environment.yml`](./environment.yml)
## Data
* **Creative corpus** (7.6 k fiction sentences from DPC + 2.4 k OpenSubtitles).
* Sentence-level 1:1 alignments; deduplicated to avoid leakage.
See https://github.com/muniekstache/Transfer-Creativity.git for full pipeline.