|
--- |
|
license: mit |
|
language: |
|
- en |
|
- nl |
|
tags: |
|
- machine-translation |
|
- low-resource |
|
- creativity |
|
library_name: transformers |
|
pipeline_tag: translation |
|
model-index: |
|
- name: EN-DE → EN-NL • Creative |
|
results: |
|
- task: |
|
type: machine-translation |
|
name: Translation |
|
dataset: |
|
name: Dutch Parallel Corpus + OpenSubtitles (creative subset) |
|
type: Helsinki-NLP/open_subtitles |
|
split: test |
|
metrics: |
|
- type: sacrebleu |
|
name: SacreBLEU |
|
value: 18.35 |
|
greater_is_better: true |
|
--- |
|
|
|
# EN-DE parent ➜ EN-NL fine-tuned on creative corpus |
|
|
|
**Authors:** Niek Holter |
|
**Thesis:** “Transferring Creativity” |
|
|
|
## Summary |
|
This model starts from Helsinki-NLP’s MarianMT `opus-mt-en-de` and is fine-tuned on a 10k-sentence **creative** English–Dutch corpus (fiction + subtitles). |
|
It is one of four systems trained for my bachelor’s thesis to study how transfer-learning settings affect MT creativity. |
|
|
|
| Parent model | Fine-tune data | BLEU | COMET | Transformed Creativity Score | |
|
|-------------|----------------|------|-------|------------------| |
|
| en-de | Creative | 18.4 | 0.662 | 0.42 | |
|
|
|
## Intended use |
|
* Research on creative MT and low-resource transfer learning |
|
|
|
## Training details |
|
* Hardware : NVIDIA GTX 1070 (CUDA 12.1) |
|
* Epochs : Early-stopped ≤ 200 (patience 5) |
|
* LR / batch : 2 e-5 / 16 |
|
* Script : [`finetuning.py`](./finetuning.py) |
|
* Env : [`environment.yml`](./environment.yml) |
|
|
|
## Data |
|
* **Creative corpus** (7.6 k fiction sentences from DPC + 2.4 k OpenSubtitles). |
|
* Sentence-level 1:1 alignments; deduplicated to avoid leakage. |
|
See https://github.com/muniekstache/Transfer-Creativity.git for full pipeline. |