segformer-b5-finetuned-ade20k-hgo-coord_40epochs_distortion_ver2_global_norm_with_void_4

This model is a fine-tuned version of nvidia/segformer-b5-finetuned-ade-640-640 on the NICOPOI-9/Modphad_Perlin_two_void_coord_global_norm dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6653
  • Mean Iou: 0.7725
  • Mean Accuracy: 0.8702
  • Overall Accuracy: 0.8824
  • Accuracy [0,0]: 0.8550
  • Accuracy [0,1]: 0.8883
  • Accuracy [1,0]: 0.9019
  • Accuracy [1,1]: 0.8817
  • Accuracy [0,2]: 0.8976
  • Accuracy [0,3]: 0.9033
  • Accuracy [1,2]: 0.8715
  • Accuracy [1,3]: 0.9091
  • Accuracy [2,0]: 0.8286
  • Accuracy [2,1]: 0.8755
  • Accuracy [2,2]: 0.8668
  • Accuracy [2,3]: 0.8119
  • Accuracy [3,0]: 0.8624
  • Accuracy [3,1]: 0.7922
  • Accuracy [3,2]: 0.8500
  • Accuracy [3,3]: 0.8287
  • Accuracy Void: 0.9695
  • Iou [0,0]: 0.7906
  • Iou [0,1]: 0.8047
  • Iou [1,0]: 0.7816
  • Iou [1,1]: 0.8141
  • Iou [0,2]: 0.8098
  • Iou [0,3]: 0.7654
  • Iou [1,2]: 0.7771
  • Iou [1,3]: 0.7698
  • Iou [2,0]: 0.7262
  • Iou [2,1]: 0.7632
  • Iou [2,2]: 0.7299
  • Iou [2,3]: 0.7208
  • Iou [3,0]: 0.7854
  • Iou [3,1]: 0.7184
  • Iou [3,2]: 0.7428
  • Iou [3,3]: 0.7067
  • Iou Void: 0.9263

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 160

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy [0,0] Accuracy [0,1] Accuracy [1,0] Accuracy [1,1] Accuracy [0,2] Accuracy [0,3] Accuracy [1,2] Accuracy [1,3] Accuracy [2,0] Accuracy [2,1] Accuracy [2,2] Accuracy [2,3] Accuracy [3,0] Accuracy [3,1] Accuracy [3,2] Accuracy [3,3] Accuracy Void Iou [0,0] Iou [0,1] Iou [1,0] Iou [1,1] Iou [0,2] Iou [0,3] Iou [1,2] Iou [1,3] Iou [2,0] Iou [2,1] Iou [2,2] Iou [2,3] Iou [3,0] Iou [3,1] Iou [3,2] Iou [3,3] Iou Void
1.1886 7.3260 4000 1.2673 0.3996 0.5640 0.6016 0.4741 0.5454 0.5928 0.6399 0.5156 0.4641 0.4718 0.5480 0.4585 0.5101 0.5382 0.5261 0.6719 0.5590 0.4871 0.6623 0.9223 0.4093 0.4143 0.3984 0.4226 0.4037 0.3569 0.3321 0.4267 0.3569 0.3466 0.3401 0.3917 0.4129 0.3384 0.3123 0.2921 0.8383
1.2869 14.6520 8000 0.9750 0.5116 0.6709 0.7020 0.6675 0.6769 0.7363 0.7205 0.6219 0.6666 0.4876 0.7955 0.6715 0.6206 0.5169 0.7125 0.7610 0.4896 0.6361 0.7068 0.9174 0.5488 0.5559 0.5446 0.4579 0.5345 0.5201 0.4101 0.5248 0.4857 0.4404 0.4303 0.4828 0.5633 0.4133 0.5004 0.4308 0.8539
1.2291 21.9780 12000 0.8046 0.5963 0.7469 0.7658 0.7366 0.7485 0.7818 0.7346 0.7464 0.8049 0.6572 0.8151 0.6797 0.7084 0.7394 0.7938 0.7353 0.6297 0.7787 0.7009 0.9068 0.6130 0.6405 0.6005 0.6198 0.6201 0.5553 0.5344 0.6296 0.5199 0.5460 0.4700 0.6153 0.6217 0.5344 0.5849 0.5573 0.8750
0.3104 29.3040 16000 0.6399 0.6582 0.7930 0.8091 0.7850 0.8352 0.8091 0.8373 0.8137 0.8251 0.7227 0.7906 0.8229 0.7740 0.7435 0.8859 0.8129 0.6392 0.7057 0.7630 0.9157 0.6952 0.6891 0.6964 0.6733 0.6595 0.6223 0.6479 0.6870 0.6201 0.6079 0.6430 0.6449 0.6967 0.5473 0.5996 0.5790 0.8810
0.3486 36.6300 20000 0.6188 0.6709 0.8015 0.8193 0.7634 0.8269 0.8616 0.8582 0.8198 0.8505 0.6733 0.8336 0.8299 0.8104 0.7407 0.8566 0.7730 0.6485 0.7307 0.8084 0.9401 0.7015 0.7169 0.6902 0.7149 0.6658 0.6510 0.6201 0.6931 0.6274 0.6539 0.6000 0.6483 0.6773 0.5972 0.6464 0.6074 0.8940
0.2437 43.9560 24000 0.6233 0.6775 0.8026 0.8251 0.8422 0.8838 0.8424 0.8420 0.8351 0.8449 0.6714 0.8251 0.8146 0.8303 0.7672 0.8111 0.7900 0.6462 0.7008 0.7325 0.9644 0.7360 0.6873 0.6956 0.7231 0.6931 0.6536 0.6321 0.7337 0.6171 0.6415 0.5926 0.6804 0.7243 0.5894 0.5893 0.6230 0.9052
0.1864 51.2821 28000 0.5680 0.7150 0.8333 0.8473 0.8205 0.8365 0.8748 0.8464 0.8739 0.8255 0.8341 0.8842 0.7700 0.7983 0.8625 0.7927 0.8406 0.7202 0.8199 0.8125 0.9538 0.7419 0.7433 0.7285 0.7755 0.6894 0.6936 0.7199 0.7695 0.6154 0.6969 0.6473 0.6570 0.7580 0.6683 0.6683 0.6762 0.9059
0.1692 58.6081 32000 0.5921 0.7288 0.8426 0.8558 0.8258 0.8749 0.8927 0.8481 0.8773 0.8747 0.8187 0.8771 0.7955 0.8649 0.7956 0.7949 0.8335 0.7759 0.8405 0.7863 0.9475 0.7648 0.7547 0.7451 0.7684 0.7623 0.7160 0.7242 0.7323 0.6573 0.6880 0.6486 0.7025 0.7500 0.6799 0.7119 0.6784 0.9057
0.4861 65.9341 36000 0.5194 0.7383 0.8482 0.8616 0.8336 0.8530 0.8778 0.8545 0.8688 0.8927 0.8369 0.8942 0.8213 0.8737 0.8223 0.8568 0.8525 0.6965 0.8116 0.8126 0.9609 0.7682 0.7622 0.7594 0.7796 0.7457 0.6981 0.7502 0.7548 0.6797 0.7048 0.6785 0.7433 0.7979 0.6522 0.7041 0.6543 0.9186
0.0915 73.2601 40000 0.5566 0.7394 0.8480 0.8621 0.8206 0.8965 0.9048 0.8691 0.8445 0.8811 0.8250 0.9031 0.8086 0.8207 0.8112 0.8027 0.8587 0.7725 0.8267 0.8175 0.9533 0.7485 0.7813 0.7311 0.7713 0.7492 0.7206 0.7520 0.7441 0.6908 0.7191 0.7050 0.7131 0.7688 0.6863 0.6970 0.6761 0.9154
0.077 80.5861 44000 0.5688 0.7463 0.8535 0.8664 0.8592 0.8755 0.9036 0.8583 0.8760 0.8869 0.8099 0.9010 0.8338 0.8629 0.7998 0.8509 0.8282 0.7651 0.8461 0.8025 0.9504 0.7777 0.7797 0.7702 0.7893 0.7733 0.7193 0.7441 0.7597 0.6706 0.7043 0.6729 0.7524 0.7556 0.7023 0.7405 0.6601 0.9144
0.157 87.9121 48000 0.5899 0.7461 0.8530 0.8667 0.8567 0.8936 0.9126 0.8858 0.8789 0.8671 0.8358 0.8843 0.7829 0.8759 0.8621 0.7755 0.8669 0.7841 0.7996 0.7827 0.9564 0.7788 0.7744 0.7384 0.7894 0.7758 0.7410 0.7388 0.7349 0.6856 0.7261 0.7241 0.7141 0.7745 0.6944 0.7012 0.6713 0.9202
0.1121 95.2381 52000 0.5786 0.7497 0.8572 0.8687 0.7989 0.8786 0.9104 0.8817 0.8724 0.8860 0.8292 0.8782 0.8114 0.8692 0.8686 0.8451 0.8437 0.8010 0.8048 0.8363 0.9572 0.7612 0.7862 0.7810 0.7833 0.7666 0.7264 0.7541 0.7763 0.7090 0.7208 0.6813 0.7268 0.7698 0.6926 0.6978 0.6915 0.9200
0.1639 102.5641 56000 0.6080 0.7492 0.8558 0.8690 0.8640 0.8562 0.8978 0.8556 0.8780 0.8913 0.8356 0.8889 0.8292 0.8292 0.8665 0.8356 0.8422 0.7435 0.8396 0.8296 0.9651 0.8072 0.7678 0.7487 0.7867 0.7676 0.7490 0.7302 0.7669 0.6984 0.7091 0.6520 0.7207 0.7901 0.6841 0.7341 0.7021 0.9220
0.1274 109.8901 60000 0.5982 0.7551 0.8589 0.8722 0.8467 0.8706 0.9042 0.8514 0.8906 0.9028 0.8519 0.9049 0.7823 0.8592 0.8388 0.8417 0.8580 0.7620 0.8412 0.8282 0.9673 0.7838 0.7805 0.7717 0.8013 0.7760 0.7264 0.7607 0.7828 0.6788 0.7438 0.6709 0.7439 0.7875 0.7008 0.7342 0.6706 0.9241
0.0471 117.2161 64000 0.6311 0.7516 0.8551 0.8701 0.8204 0.8726 0.9208 0.8911 0.8795 0.8946 0.8237 0.9084 0.8002 0.8610 0.8294 0.8125 0.8272 0.7370 0.8589 0.8228 0.9765 0.7672 0.7862 0.7681 0.7937 0.7888 0.7340 0.7439 0.7461 0.6789 0.7402 0.7042 0.7235 0.7818 0.6896 0.7305 0.6793 0.9216
0.1196 124.5421 68000 0.6434 0.7574 0.8591 0.8729 0.8381 0.8515 0.9121 0.8759 0.8960 0.9228 0.8405 0.9020 0.8199 0.8498 0.8307 0.8084 0.8578 0.7502 0.8544 0.8232 0.9713 0.7775 0.7835 0.7660 0.7959 0.7943 0.7476 0.7604 0.7338 0.7099 0.7565 0.7205 0.7249 0.7782 0.6936 0.7448 0.6688 0.9201
0.0608 131.8681 72000 0.6561 0.7643 0.8649 0.8778 0.8422 0.8783 0.9092 0.8826 0.9052 0.8930 0.8790 0.8970 0.7703 0.8836 0.8538 0.8109 0.8547 0.7824 0.8676 0.8203 0.9735 0.7761 0.8057 0.7746 0.8099 0.7989 0.7626 0.7788 0.7617 0.6689 0.7437 0.7134 0.7253 0.7774 0.7210 0.7450 0.7057 0.9240
0.3017 139.1941 76000 0.6601 0.7695 0.8682 0.8806 0.8440 0.8853 0.9105 0.8975 0.8843 0.8977 0.8319 0.9032 0.8348 0.8918 0.8607 0.7982 0.8622 0.7801 0.8673 0.8393 0.9705 0.7834 0.7974 0.7818 0.8137 0.7982 0.7578 0.7558 0.7736 0.7101 0.7564 0.7204 0.7175 0.7931 0.7169 0.7660 0.7131 0.9255
0.0676 146.5201 80000 0.6446 0.7707 0.8687 0.8815 0.8372 0.8897 0.9133 0.8882 0.9012 0.8940 0.8804 0.9149 0.8135 0.8804 0.8601 0.7968 0.8520 0.7825 0.8531 0.8347 0.9754 0.7825 0.8057 0.7876 0.8081 0.8047 0.7625 0.7868 0.7803 0.7166 0.7450 0.7153 0.7174 0.7854 0.7197 0.7427 0.7183 0.9234
0.0312 153.8462 84000 0.6653 0.7725 0.8702 0.8824 0.8550 0.8883 0.9019 0.8817 0.8976 0.9033 0.8715 0.9091 0.8286 0.8755 0.8668 0.8119 0.8624 0.7922 0.8500 0.8287 0.9695 0.7906 0.8047 0.7816 0.8141 0.8098 0.7654 0.7771 0.7698 0.7262 0.7632 0.7299 0.7208 0.7854 0.7184 0.7428 0.7067 0.9263

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
30
Safetensors
Model size
84.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for NICOPOI-9/segformer-b5-finetuned-ade20k-hgo-coord_40epochs_distortion_ver2_global_norm_with_void_4

Finetuned
(9)
this model
Finetunes
1 model