segformer-b5-finetuned-morphpad-morphpadver1-hgo-coord-v9_16mat_2void_40epochs
This model is a fine-tuned version of NICOPOI-9/segformer-b5-finetuned-ade20k-morphpadver1-hgo-coord-v9_mix_resample_40epochs on the NICOPOI-9/morphpad_16_labels_2voids_gaussian dataset. It achieves the following results on the evaluation set:
- Loss: 0.3575
- Mean Iou: 0.8930
- Mean Accuracy: 0.9416
- Overall Accuracy: 0.9463
- Accuracy [0,0]: 0.9359
- Accuracy [0,1]: 0.9388
- Accuracy [1,0]: 0.9489
- Accuracy [1,1]: 0.9515
- Accuracy [0,2]: 0.9458
- Accuracy [0,3]: 0.9591
- Accuracy [1,2]: 0.9443
- Accuracy [1,3]: 0.9617
- Accuracy [2,0]: 0.9116
- Accuracy [2,1]: 0.9338
- Accuracy [2,2]: 0.9560
- Accuracy [2,3]: 0.9303
- Accuracy [3,0]: 0.9475
- Accuracy [3,1]: 0.9086
- Accuracy [3,2]: 0.9391
- Accuracy [3,3]: 0.9160
- Accuracy Void: 0.9788
- Iou [0,0]: 0.8957
- Iou [0,1]: 0.9112
- Iou [1,0]: 0.8826
- Iou [1,1]: 0.9078
- Iou [0,2]: 0.8907
- Iou [0,3]: 0.9174
- Iou [1,2]: 0.8766
- Iou [1,3]: 0.8767
- Iou [2,0]: 0.8790
- Iou [2,1]: 0.9008
- Iou [2,2]: 0.8806
- Iou [2,3]: 0.8972
- Iou [3,0]: 0.9088
- Iou [3,1]: 0.8467
- Iou [3,2]: 0.8877
- Iou [3,3]: 0.8755
- Iou Void: 0.9455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy [0,0] | Accuracy [0,1] | Accuracy [1,0] | Accuracy [1,1] | Accuracy [0,2] | Accuracy [0,3] | Accuracy [1,2] | Accuracy [1,3] | Accuracy [2,0] | Accuracy [2,1] | Accuracy [2,2] | Accuracy [2,3] | Accuracy [3,0] | Accuracy [3,1] | Accuracy [3,2] | Accuracy [3,3] | Accuracy Void | Iou [0,0] | Iou [0,1] | Iou [1,0] | Iou [1,1] | Iou [0,2] | Iou [0,3] | Iou [1,2] | Iou [1,3] | Iou [2,0] | Iou [2,1] | Iou [2,2] | Iou [2,3] | Iou [3,0] | Iou [3,1] | Iou [3,2] | Iou [3,3] | Iou Void |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2611 | 7.3260 | 4000 | 0.4402 | 0.7621 | 0.8618 | 0.8738 | 0.8911 | 0.8941 | 0.9373 | 0.8466 | 0.8823 | 0.8020 | 0.8669 | 0.8736 | 0.8264 | 0.8524 | 0.8802 | 0.8070 | 0.8686 | 0.7729 | 0.8628 | 0.8363 | 0.9506 | 0.7294 | 0.8149 | 0.7502 | 0.7804 | 0.7516 | 0.7345 | 0.7654 | 0.7698 | 0.7054 | 0.7860 | 0.7727 | 0.7222 | 0.7650 | 0.7060 | 0.7560 | 0.7201 | 0.9259 |
0.0752 | 14.6520 | 8000 | 0.3003 | 0.8459 | 0.9150 | 0.9219 | 0.9089 | 0.9053 | 0.9341 | 0.9189 | 0.9172 | 0.9234 | 0.8981 | 0.9248 | 0.9091 | 0.8928 | 0.9286 | 0.9263 | 0.9165 | 0.8866 | 0.9078 | 0.8821 | 0.9748 | 0.8681 | 0.8589 | 0.8396 | 0.8530 | 0.8516 | 0.8442 | 0.8280 | 0.8354 | 0.8609 | 0.8350 | 0.8572 | 0.8455 | 0.8423 | 0.7927 | 0.8292 | 0.8006 | 0.9391 |
0.0345 | 21.9780 | 12000 | 0.3628 | 0.8687 | 0.9270 | 0.9333 | 0.9331 | 0.9187 | 0.9463 | 0.9345 | 0.9437 | 0.9366 | 0.9222 | 0.9471 | 0.9114 | 0.9126 | 0.9537 | 0.9311 | 0.9123 | 0.8793 | 0.9177 | 0.8809 | 0.9784 | 0.8684 | 0.8907 | 0.8609 | 0.8826 | 0.8744 | 0.8767 | 0.8494 | 0.8459 | 0.8656 | 0.8727 | 0.8758 | 0.8759 | 0.8715 | 0.8379 | 0.8433 | 0.8352 | 0.9405 |
0.0422 | 29.3040 | 16000 | 0.3604 | 0.8848 | 0.9367 | 0.9422 | 0.9402 | 0.9259 | 0.9539 | 0.9297 | 0.9421 | 0.9427 | 0.9482 | 0.9681 | 0.8912 | 0.9222 | 0.9529 | 0.9482 | 0.9337 | 0.8971 | 0.9419 | 0.9112 | 0.9746 | 0.8744 | 0.9078 | 0.8724 | 0.8885 | 0.8864 | 0.8982 | 0.8794 | 0.8767 | 0.8503 | 0.8826 | 0.8739 | 0.9045 | 0.8934 | 0.8480 | 0.8898 | 0.8710 | 0.9449 |
0.0304 | 36.6300 | 20000 | 0.3575 | 0.8930 | 0.9416 | 0.9463 | 0.9359 | 0.9388 | 0.9489 | 0.9515 | 0.9458 | 0.9591 | 0.9443 | 0.9617 | 0.9116 | 0.9338 | 0.9560 | 0.9303 | 0.9475 | 0.9086 | 0.9391 | 0.9160 | 0.9788 | 0.8957 | 0.9112 | 0.8826 | 0.9078 | 0.8907 | 0.9174 | 0.8766 | 0.8767 | 0.8790 | 0.9008 | 0.8806 | 0.8972 | 0.9088 | 0.8467 | 0.8877 | 0.8755 | 0.9455 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Model tree for NICOPOI-9/segformer-b5-finetuned-morphpad-morphpadver1-hgo-coord-v9_16mat_2void_40epochs
Base model
nvidia/segformer-b5-finetuned-ade-640-640