niksyromyatnikov commited on
Commit
d98195c
·
verified ·
1 Parent(s): f4b910f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -113
README.md CHANGED
@@ -4,12 +4,15 @@ library_name: peft
4
  license: cc-by-nc-4.0
5
  language:
6
  - uk
 
7
  ---
8
 
9
  # Model Card for Model ID
10
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
 
 
 
13
  Presented in [Empowering Smaller Models: Tuning LLaMA and Gemma with Chain-of-Thought for Ukrainian Exam Tasks (arXiv:2503.13988)](https://arxiv.org/abs/2503.13988)
14
 
15
  PEFT 4bit tuning of google/gemma-2-9b-it on Ukrainian language and literature tasks of ZNO (EIE) & NMT dataset to generate step-by-step solution with task topic:
@@ -39,194 +42,142 @@ PEFT 4bit tuning of google/gemma-2-9b-it on Ukrainian language and literature ta
39
  Відповідь: 1 – Б, 2 – Д, 3 – А, 4 – Г.<end_of_turn>
40
  ```
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ## Model Details
43
 
44
  ### Model Description
45
 
46
  <!-- Provide a longer summary of what this model is. -->
47
 
48
-
49
-
50
- - **Developed by:** [More Information Needed]
51
- - **Funded by [optional]:** [More Information Needed]
52
- - **Shared by [optional]:** [More Information Needed]
53
- - **Model type:** [More Information Needed]
54
- - **Language(s) (NLP):** [More Information Needed]
55
- - **License:** [More Information Needed]
56
- - **Finetuned from model [optional]:** [More Information Needed]
57
 
58
  ### Model Sources [optional]
59
 
60
  <!-- Provide the basic links for the model. -->
61
 
62
- - **Repository:** [More Information Needed]
63
- - **Paper [optional]:** [More Information Needed]
64
- - **Demo [optional]:** [More Information Needed]
65
 
66
  ## Uses
67
 
68
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
69
-
70
  ### Direct Use
71
 
72
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
73
 
74
- [More Information Needed]
75
-
76
- ### Downstream Use [optional]
77
 
78
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
79
-
80
- [More Information Needed]
81
 
82
  ### Out-of-Scope Use
83
 
84
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
85
-
86
- [More Information Needed]
87
 
88
  ## Bias, Risks, and Limitations
89
 
90
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
91
-
92
- [More Information Needed]
93
 
94
  ### Recommendations
95
 
96
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
97
-
98
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
99
-
100
- ## How to Get Started with the Model
101
-
102
- Use the code below to get started with the model.
103
-
104
- [More Information Needed]
105
 
106
  ## Training Details
107
 
108
  ### Training Data
109
 
110
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
111
-
112
- [More Information Needed]
113
 
114
  ### Training Procedure
115
 
116
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
117
-
118
- #### Preprocessing [optional]
119
-
120
  [More Information Needed]
121
 
122
-
123
  #### Training Hyperparameters
124
 
125
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
126
 
127
- #### Speeds, Sizes, Times [optional]
128
-
129
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
130
 
131
  [More Information Needed]
132
 
133
  ## Evaluation
134
 
135
- <!-- This section describes the evaluation protocols and provides the results. -->
136
-
137
  ### Testing Data, Factors & Metrics
138
 
139
  #### Testing Data
140
 
141
- <!-- This should link to a Dataset Card if possible. -->
142
-
143
- [More Information Needed]
144
 
145
  #### Factors
146
 
147
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
148
-
149
  [More Information Needed]
150
 
151
  #### Metrics
152
 
153
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
154
-
155
  [More Information Needed]
156
 
157
  ### Results
158
 
159
- [More Information Needed]
160
-
161
  #### Summary
162
 
163
-
164
-
165
- ## Model Examination [optional]
166
-
167
- <!-- Relevant interpretability work for the model goes here -->
168
-
169
- [More Information Needed]
170
-
171
- ## Environmental Impact
172
-
173
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
174
-
175
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
176
-
177
- - **Hardware Type:** [More Information Needed]
178
- - **Hours used:** [More Information Needed]
179
- - **Cloud Provider:** [More Information Needed]
180
- - **Compute Region:** [More Information Needed]
181
- - **Carbon Emitted:** [More Information Needed]
182
-
183
- ## Technical Specifications [optional]
184
-
185
- ### Model Architecture and Objective
186
-
187
- [More Information Needed]
188
-
189
- ### Compute Infrastructure
190
-
191
- [More Information Needed]
192
-
193
- #### Hardware
194
-
195
  [More Information Needed]
196
 
197
- #### Software
198
-
199
- [More Information Needed]
200
-
201
- ## Citation [optional]
202
-
203
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
204
 
205
  **BibTeX:**
206
 
207
- [More Information Needed]
 
 
 
 
 
 
 
208
 
209
  **APA:**
210
 
211
  [More Information Needed]
212
 
213
- ## Glossary [optional]
214
-
215
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
216
-
217
- [More Information Needed]
218
-
219
- ## More Information [optional]
220
-
221
- [More Information Needed]
222
-
223
- ## Model Card Authors [optional]
224
-
225
- [More Information Needed]
226
-
227
  ## Model Card Contact
228
 
229
  [More Information Needed]
 
230
  ### Framework versions
231
 
232
  - PEFT 0.14.0
 
4
  license: cc-by-nc-4.0
5
  language:
6
  - uk
7
+ pipeline_tag: text-generation
8
  ---
9
 
10
  # Model Card for Model ID
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
 
14
+ **This model is CC BY NC 4.0 (allowing only non-commercial use) and should not be used outside of research purposes.**
15
+
16
  Presented in [Empowering Smaller Models: Tuning LLaMA and Gemma with Chain-of-Thought for Ukrainian Exam Tasks (arXiv:2503.13988)](https://arxiv.org/abs/2503.13988)
17
 
18
  PEFT 4bit tuning of google/gemma-2-9b-it on Ukrainian language and literature tasks of ZNO (EIE) & NMT dataset to generate step-by-step solution with task topic:
 
42
  Відповідь: 1 – Б, 2 – Д, 3 – А, 4 – Г.<end_of_turn>
43
  ```
44
 
45
+ ## Inference code
46
+
47
+ ```
48
+ import torch
49
+ from peft import PeftModel
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
51
+
52
+ quantization_config = BitsAndBytesConfig(
53
+ load_in_4bit=True,
54
+ bnb_4bit_compute_dtype=torch.float16, # computation in fp16
55
+ bnb_4bit_use_double_quant=True, # enables double quantization for better accuracy
56
+ bnb_4bit_quant_type="nf4" # choose "nf4" (normal float4) or other types as supported
57
+ )
58
+
59
+ base_model = "google/gemma-2-9b-it"
60
+
61
+ tokenizer = AutoTokenizer.from_pretrained(base_model, max_sequence_length=3072, model_max_length=3072)
62
+ model_base = AutoModelForCausalLM.from_pretrained(base_model, quantization_config=quantization_config, device_map="auto", torch_dtype=torch.float16, use_flash_attention_2=False)
63
+ model = PeftModel.from_pretrained(model_base, "NLPForUA/gemma-2-it-zno-cot-with-topic", quantization_config=quantization_config, device_map="auto", torch_dtype=torch.float16, use_flash_attention_2=False)
64
+
65
+ print(tokenizer.decode(
66
+ model.generate(
67
+ input_ids=inputs,
68
+ max_new_tokens=1024,
69
+ use_cache=True,
70
+ temperature=0.0,
71
+ do_sample=False,
72
+ repetition_penalty=1.0,
73
+ pad_token_id=tokenizer.eos_token_id,
74
+ eos_token_id=[101, 107]
75
+ )[0]))
76
+ ```
77
+
78
+
79
  ## Model Details
80
 
81
  ### Model Description
82
 
83
  <!-- Provide a longer summary of what this model is. -->
84
 
85
+ - **Developed by:** NLP for UA
86
+ - **Model type:** Gemma
87
+ - **Language(s) (NLP):** Ukrainian (uk)
88
+ - **License:** cc-by-nc-4.0
89
+ - **Finetuned from model:** google/gemma-2-9b-it
 
 
 
 
90
 
91
  ### Model Sources [optional]
92
 
93
  <!-- Provide the basic links for the model. -->
94
 
95
+ - **Repository:** [github.com/NLPForUA/ZNO](https://github.com/NLPForUA/ZNO)
96
+ - **Paper:** [Empowering Smaller Models: Tuning LLaMA and Gemma with Chain-of-Thought for Ukrainian Exam Tasks (arXiv:2503.13988)](https://arxiv.org/abs/2503.13988)
 
97
 
98
  ## Uses
99
 
 
 
100
  ### Direct Use
101
 
102
+ The model can be used directly for generating step-by-step solutions to Ukrainian language and literature exam tasks. Input should follow the format shown in the example above.
103
 
104
+ ### Downstream Use
 
 
105
 
106
+ The model could be fine-tuned further for other Ukrainian language tasks or integrated into educational applications.
 
 
107
 
108
  ### Out-of-Scope Use
109
 
110
+ This model is specifically trained for Ukrainian exam tasks. It may not perform well on other languages or tasks.
 
 
111
 
112
  ## Bias, Risks, and Limitations
113
 
114
+ The model may exhibit biases present in the training data. It is crucial to critically evaluate its outputs and be aware of potential inaccuracies. Further analysis is needed to fully characterize biases and limitations.
 
 
115
 
116
  ### Recommendations
117
 
118
+ Users should be aware of the potential biases and limitations of the model and use its output critically. Further evaluation is needed to fully assess the model's capabilities and limitations.
 
 
 
 
 
 
 
 
119
 
120
  ## Training Details
121
 
122
  ### Training Data
123
 
124
+ [More Information Needed - Link to Dataset Card and description]
 
 
125
 
126
  ### Training Procedure
127
 
 
 
 
 
128
  [More Information Needed]
129
 
 
130
  #### Training Hyperparameters
131
 
132
+ - **Training regime:** 4-bit quantization
133
 
134
+ #### Speeds, Sizes, Times
 
 
135
 
136
  [More Information Needed]
137
 
138
  ## Evaluation
139
 
 
 
140
  ### Testing Data, Factors & Metrics
141
 
142
  #### Testing Data
143
 
144
+ [More Information Needed - Link to Dataset Card and description]
 
 
145
 
146
  #### Factors
147
 
 
 
148
  [More Information Needed]
149
 
150
  #### Metrics
151
 
 
 
152
  [More Information Needed]
153
 
154
  ### Results
155
 
 
 
156
  #### Summary
157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  [More Information Needed]
159
 
160
+ ## Citation
 
 
 
 
 
 
161
 
162
  **BibTeX:**
163
 
164
+ ```bibtex
165
+ @article{EmpoweringSmallerModels,
166
+ author = {Mykyta Syromiatnikov, Victoria Ruvinskaya, and Nataliia Komleva},
167
+ title = {Empowering Smaller Models: Tuning LLaMA and Gemma with Chain-of-Thought for Ukrainian Exam Tasks},
168
+ journal = {arXiv preprint arXiv:2503.13988},
169
+ year = {2025}
170
+ }
171
+ ```
172
 
173
  **APA:**
174
 
175
  [More Information Needed]
176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
  ## Model Card Contact
178
 
179
  [More Information Needed]
180
+
181
  ### Framework versions
182
 
183
  - PEFT 0.14.0