working

This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.6546 0.92 6 1.7189
1.2076 2.0 13 0.8973
0.7157 2.92 19 0.5511
0.4138 4.0 26 0.4499
0.4018 4.92 32 0.4044
0.3034 6.0 39 0.3793
0.3186 6.92 45 0.3645
0.2451 8.0 52 0.3590
0.2556 8.92 58 0.3660
0.1937 10.0 65 0.3825
0.1993 10.92 71 0.3782
0.1511 12.0 78 0.4275
0.1487 12.92 84 0.4234
0.1098 14.0 91 0.4876
0.1121 14.92 97 0.4675
0.0846 16.0 104 0.5187
0.0869 16.92 110 0.5365
0.0677 18.0 117 0.5372
0.0729 18.92 123 0.5639
0.0587 20.0 130 0.5773
0.0623 20.92 136 0.6006
0.0524 22.0 143 0.6098
0.0599 22.92 149 0.6101
0.0495 24.0 156 0.6204
0.0571 24.92 162 0.6297
0.0475 26.0 169 0.6353
0.0551 26.92 175 0.6374
0.0455 27.69 180 0.6374

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Narkantak/working

Adapter
(300)
this model