metadata
library_name: transformers
license: apache-2.0
base_model: Geotrend/bert-base-th-cased
tags:
- generated_from_trainer
datasets:
- lst20
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lst20
type: lst20
config: lst20
split: validation
args: lst20
metrics:
- name: Precision
type: precision
value: 0.8146895294348094
- name: Recall
type: recall
value: 0.8409048492954679
- name: F1
type: f1
value: 0.8275896376229288
- name: Accuracy
type: accuracy
value: 0.9378905377283859
test-ner
This model is a fine-tuned version of Geotrend/bert-base-th-cased on the lst20 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1910
- Precision: 0.8147
- Recall: 0.8409
- F1: 0.8276
- Accuracy: 0.9379
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1623 | 1.0 | 3957 | 0.1910 | 0.8147 | 0.8409 | 0.8276 | 0.9379 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1