vit-Facial-Expression-Recognition

This model is a fine-tuned version of motheecreator/vit-Facial-Expression-Recognition on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5713
  • Accuracy: 0.8308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3894 1.2198 100 0.3854 0.8667
0.3556 2.4397 200 0.3952 0.8628
0.3545 3.6595 300 0.4057 0.8604
0.3243 4.8794 400 0.4035 0.8565
0.3718 6.0977 500 0.4029 0.8586
0.342 7.3176 600 0.4279 0.8493
0.3021 8.5374 700 0.4375 0.8449
0.2795 9.7573 800 0.4542 0.8468
0.2642 10.9771 900 0.4717 0.8434
0.2223 12.1954 1000 0.4991 0.8367
0.1875 13.4153 1100 0.5185 0.8346
0.1481 14.6351 1200 0.5357 0.8351
0.1291 15.8550 1300 0.5409 0.8350
0.1021 17.0733 1400 0.5684 0.8292
0.0851 18.2931 1500 0.5752 0.8296
0.076 19.5130 1600 0.5712 0.8308

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for NekoJar/vit-Facial-Expression-Recognition

Finetuned
(17)
this model

Evaluation results