Edit model card

SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L12-v2
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/Finetune2-MiniLM-L12-v2")
# Run inference
sentences = [
    'A man fishing in a pointy blue boat on a river lined with palm trees.',
    'The man is with friends.',
    'A man rubs his bald head.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.5003
spearman_cosine 0.4919
pearson_manhattan 0.4752
spearman_manhattan 0.4917
pearson_euclidean 0.476
spearman_euclidean 0.4919
pearson_dot 0.5003
spearman_dot 0.4919
pearson_max 0.5003
spearman_max 0.4919

Training Details

Training Dataset

Unnamed Dataset

  • Size: 100,000 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 16.38 tokens
    • max: 61 tokens
    • min: 4 tokens
    • mean: 10.56 tokens
    • max: 43 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Three men in an art gallery posing for the camera. Paintings are nearby. 0.5
    A shirtless man wearing a vest walks on a stage with his arms up. The man is about to perform. 0.5
    The man is walking outside near a rocky river. The man is walking 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss snli-dev_spearman_max
0.08 500 0.1842 0.3333
0.16 1000 0.1489 0.3449
0.24 1500 0.1427 0.3633
0.32 2000 0.1391 0.3854
0.4 2500 0.1401 0.4015
0.48 3000 0.139 0.3982
0.56 3500 0.1352 0.4327
0.64 4000 0.1319 0.4262
0.72 4500 0.1336 0.4034
0.8 5000 0.1321 0.4021
0.88 5500 0.1309 0.4294
0.96 6000 0.1271 0.4198
1.0 6250 - 0.4317
1.04 6500 0.132 0.4445
1.12 7000 0.1296 0.4509
1.2 7500 0.1236 0.4559
1.28 8000 0.1257 0.4542
1.3600 8500 0.1236 0.4507
1.44 9000 0.1277 0.4540
1.52 9500 0.1249 0.4664
1.6 10000 0.1208 0.4418
1.6800 10500 0.1228 0.4457
1.76 11000 0.1212 0.4222
1.8400 11500 0.1203 0.4507
1.92 12000 0.119 0.4572
2.0 12500 0.1196 0.4667
2.08 13000 0.1194 0.4733
2.16 13500 0.1172 0.4786
2.24 14000 0.1172 0.4765
2.32 14500 0.1145 0.4717
2.4 15000 0.1167 0.4803
2.48 15500 0.1177 0.4678
2.56 16000 0.1162 0.4805
2.64 16500 0.1137 0.4780
2.7200 17000 0.1153 0.4788
2.8 17500 0.115 0.4784
2.88 18000 0.1128 0.4864
2.96 18500 0.11 0.4812
3.0 18750 - 0.4823
3.04 19000 0.1136 0.4900
3.12 19500 0.1135 0.4897
3.2 20000 0.1094 0.4856
3.2800 20500 0.1108 0.4889
3.36 21000 0.1083 0.4909
3.44 21500 0.1133 0.4892
3.52 22000 0.1106 0.4910
3.6 22500 0.1079 0.4888
3.68 23000 0.1091 0.4890
3.76 23500 0.1079 0.4822
3.84 24000 0.1087 0.4887
3.92 24500 0.1066 0.4926
4.0 25000 0.1069 0.4919

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
12
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Nessrine9/Finetune2-MiniLM-L12-v2

Finetuned
(24)
this model

Evaluation results