metadata
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: >-
The church has granite statues of Jesus and the Apostles adorning its
porch .
sentences:
- There were no statues in the church .
- L' Afrique du sud et le reste de l' Afrique sont les mêmes .
- Tours on foot are a great way to see LA .
- source_sentence: >-
Au Centre du réseau routier de la région , Alicante est également une base
logique pour les automobilistes et pour les liaisons ferroviaires et
ferroviaires .
sentences:
- Alicante est fréquentée par les automobilistes et les touristes .
- Les examinateurs ont passé sept mois à étudier leurs conclusions .
- Ferries to the island depart from the central station every 2 hours .
- source_sentence: >-
Scheduled to reopen in 2002 or 2003 , the Malibu site will house only the
Getty holdings in Greek and Roman antiquities , some of which date as far
back as 3000 b.c.
sentences:
- >-
C' est impossible d' avoir des billets pour les enregistrements
télévisés .
- >-
The Getty holdings were taken hold of thanks to the researchers ' effort
.
- After the first of may ends the peak season for ferries .
- source_sentence: >-
Une nouvelle recherche relie ces bactéries parodontale aux maladies
cardiaques , au diabète , aux bébés à faible poids de naissance , et à d'
autres saletés que vous attendez des bactéries qui se déchaînent dans le
sang .
sentences:
- >-
Le prix des actions de Caterpillar a baissé en 1991 quand ils ont fait
grève .
- Ils agissent comme chaque année est la même .
- >-
La recherche indique qu' il n' y a pas de lien entre les bactéries
parodontale et les maladies cardiaques ou le diabète .
- source_sentence: >-
L' ancien n' est pas une classification juridique qui entraîne une perte
automatique de ces droits .
sentences:
- Some degree of uncertainty is inherent in free-market systems .
- >-
Les villes grecques d' Anatolie ont été exclues de l' appartenance à la
Confédération Delian .
- Ils voulaient plaider pour les personnes âgées .
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: 0.35421287329686374
name: Pearson Cosine
- type: spearman_cosine
value: 0.3592670991851331
name: Spearman Cosine
- type: pearson_manhattan
value: 0.34936411192844985
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.3583327923327215
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.34982920048695176
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.35926709915022625
name: Spearman Euclidean
- type: pearson_dot
value: 0.3542128787197555
name: Pearson Dot
- type: spearman_dot
value: 0.35926727022169175
name: Spearman Dot
- type: pearson_max
value: 0.3542128787197555
name: Pearson Max
- type: spearman_max
value: 0.35926727022169175
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/finetuned-snli-MiniLM-L12-v2-100k-en-fr")
# Run inference
sentences = [
"L' ancien n' est pas une classification juridique qui entraîne une perte automatique de ces droits .",
'Ils voulaient plaider pour les personnes âgées .',
"Les villes grecques d' Anatolie ont été exclues de l' appartenance à la Confédération Delian .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
snli-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3542 |
spearman_cosine | 0.3593 |
pearson_manhattan | 0.3494 |
spearman_manhattan | 0.3583 |
pearson_euclidean | 0.3498 |
spearman_euclidean | 0.3593 |
pearson_dot | 0.3542 |
spearman_dot | 0.3593 |
pearson_max | 0.3542 |
spearman_max | 0.3593 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 34.31 tokens
- max: 128 tokens
- min: 3 tokens
- mean: 18.24 tokens
- max: 51 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label We 're off ! "
We 're not headed off .
1.0
Il y en a eu un ici récemment qui me vient à l' esprit que c' est à propos d' une femme que c' est ridicule je veux dire que c' est presque euh ce serait drôle si ce n' était pas si triste je veux dire cette femme cette femme est sortie et a engagé quelqu' un à
Cette femme a engagé quelqu' un récemment pour le faire et s' est fait prendre immédiatement .
0.5
Gentilello a précisé qu' il n' avait pas critiqué le processus d' examen par les pairs , mais que les panels qui examinent les interventions en matière d' alcool dans l' eds devraient inclure des représentants de la médecine d' urgence .
Gentilello S' est ensuite battu avec un psychiatre sur le parking .
0.5
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | snli-dev_spearman_max |
---|---|---|---|
0.08 | 500 | 0.1948 | 0.0484 |
0.16 | 1000 | 0.1752 | 0.1177 |
0.24 | 1500 | 0.1727 | 0.1136 |
0.32 | 2000 | 0.1668 | 0.2050 |
0.4 | 2500 | 0.1673 | 0.2227 |
0.48 | 3000 | 0.1651 | 0.1760 |
0.56 | 3500 | 0.1619 | 0.2195 |
0.64 | 4000 | 0.1625 | 0.2308 |
0.72 | 4500 | 0.1563 | 0.2405 |
0.8 | 5000 | 0.1598 | 0.2773 |
0.88 | 5500 | 0.1589 | 0.2359 |
0.96 | 6000 | 0.1587 | 0.2084 |
1.0 | 6250 | - | 0.2615 |
1.04 | 6500 | 0.158 | 0.2958 |
1.12 | 7000 | 0.1557 | 0.2887 |
1.2 | 7500 | 0.1544 | 0.2960 |
1.28 | 8000 | 0.1535 | 0.2977 |
1.3600 | 8500 | 0.1559 | 0.2546 |
1.44 | 9000 | 0.1518 | 0.3201 |
1.52 | 9500 | 0.1551 | 0.2894 |
1.6 | 10000 | 0.149 | 0.2981 |
1.6800 | 10500 | 0.152 | 0.3140 |
1.76 | 11000 | 0.1484 | 0.3056 |
1.8400 | 11500 | 0.1497 | 0.3051 |
1.92 | 12000 | 0.1522 | 0.2893 |
2.0 | 12500 | 0.1503 | 0.2944 |
2.08 | 13000 | 0.1496 | 0.3039 |
2.16 | 13500 | 0.1462 | 0.3314 |
2.24 | 14000 | 0.1505 | 0.2470 |
2.32 | 14500 | 0.1457 | 0.3081 |
2.4 | 15000 | 0.1478 | 0.3204 |
2.48 | 15500 | 0.1464 | 0.3248 |
2.56 | 16000 | 0.1442 | 0.3360 |
2.64 | 16500 | 0.1437 | 0.3418 |
2.7200 | 17000 | 0.1416 | 0.3496 |
2.8 | 17500 | 0.1434 | 0.3283 |
2.88 | 18000 | 0.146 | 0.3246 |
2.96 | 18500 | 0.1448 | 0.3352 |
3.0 | 18750 | - | 0.3248 |
3.04 | 19000 | 0.1445 | 0.3394 |
3.12 | 19500 | 0.1423 | 0.3430 |
3.2 | 20000 | 0.1415 | 0.3410 |
3.2800 | 20500 | 0.1411 | 0.3367 |
3.36 | 21000 | 0.1445 | 0.3497 |
3.44 | 21500 | 0.1383 | 0.3640 |
3.52 | 22000 | 0.1408 | 0.3497 |
3.6 | 22500 | 0.1374 | 0.3452 |
3.68 | 23000 | 0.1401 | 0.3519 |
3.76 | 23500 | 0.137 | 0.3582 |
3.84 | 24000 | 0.1393 | 0.3610 |
3.92 | 24500 | 0.1408 | 0.3575 |
4.0 | 25000 | 0.1388 | 0.3593 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}