tatoeba-fr-tok

This model is a fine-tuned version of Helsinki-NLP/opus-mt-fr-en on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6225
  • Bleu: 47.8803

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
1.1114 1.0 1167 0.8982 37.0049
0.8626 2.0 2334 0.7635 42.3598
0.7411 3.0 3501 0.7142 43.3202
0.6872 4.0 4668 0.6826 45.2163
0.6436 5.0 5835 0.6596 46.2536
0.6095 6.0 7002 0.6495 47.2469
0.5828 7.0 8169 0.6398 44.2553
0.5626 8.0 9336 0.6323 46.5712
0.542 9.0 10503 0.6306 47.7902
0.528 10.0 11670 0.6264 46.9619
0.512 11.0 12837 0.6247 47.1636
0.5036 12.0 14004 0.6226 47.9356
0.4924 13.0 15171 0.6232 47.5674
0.4848 14.0 16338 0.6226 47.6125
0.4824 15.0 17505 0.6225 47.5300

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
74.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for NetherQuartz/tatoeba-fr-tok

Finetuned
(10)
this model

Dataset used to train NetherQuartz/tatoeba-fr-tok

Collection including NetherQuartz/tatoeba-fr-tok