w2v-bert-2.0-basaa-colab-cv23.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0974
- eval_wer: 0.1065
- eval_runtime: 43.8683
- eval_samples_per_second: 35.333
- eval_steps_per_second: 4.422
- epoch: 6.8780
- step: 2400
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.1.1
- Tokenizers 0.22.0
- Downloads last month
- 56
Model tree for Ngue/w2v-bert-2.0-basaa-colab-cv23.0
Base model
facebook/w2v-bert-2.0