BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Information on legal proceedings is included in Contact Email PRIOR HISTORY: None PLACEHOLDER FOR ARBITRATION.',
'Where can information about legal proceedings be found in the financial statements?',
'What remaining authorization amount was available for share repurchases as of January 28, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.71 |
cosine_accuracy@3 | 0.8429 |
cosine_accuracy@5 | 0.8771 |
cosine_accuracy@10 | 0.9143 |
cosine_precision@1 | 0.71 |
cosine_precision@3 | 0.281 |
cosine_precision@5 | 0.1754 |
cosine_precision@10 | 0.0914 |
cosine_recall@1 | 0.71 |
cosine_recall@3 | 0.8429 |
cosine_recall@5 | 0.8771 |
cosine_recall@10 | 0.9143 |
cosine_ndcg@10 | 0.8152 |
cosine_mrr@10 | 0.7832 |
cosine_map@100 | 0.7867 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7029 |
cosine_accuracy@3 | 0.8457 |
cosine_accuracy@5 | 0.88 |
cosine_accuracy@10 | 0.9157 |
cosine_precision@1 | 0.7029 |
cosine_precision@3 | 0.2819 |
cosine_precision@5 | 0.176 |
cosine_precision@10 | 0.0916 |
cosine_recall@1 | 0.7029 |
cosine_recall@3 | 0.8457 |
cosine_recall@5 | 0.88 |
cosine_recall@10 | 0.9157 |
cosine_ndcg@10 | 0.8132 |
cosine_mrr@10 | 0.78 |
cosine_map@100 | 0.7833 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6986 |
cosine_accuracy@3 | 0.8457 |
cosine_accuracy@5 | 0.8786 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.6986 |
cosine_precision@3 | 0.2819 |
cosine_precision@5 | 0.1757 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.6986 |
cosine_recall@3 | 0.8457 |
cosine_recall@5 | 0.8786 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.8072 |
cosine_mrr@10 | 0.7746 |
cosine_map@100 | 0.7782 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6914 |
cosine_accuracy@3 | 0.8429 |
cosine_accuracy@5 | 0.8714 |
cosine_accuracy@10 | 0.9057 |
cosine_precision@1 | 0.6914 |
cosine_precision@3 | 0.281 |
cosine_precision@5 | 0.1743 |
cosine_precision@10 | 0.0906 |
cosine_recall@1 | 0.6914 |
cosine_recall@3 | 0.8429 |
cosine_recall@5 | 0.8714 |
cosine_recall@10 | 0.9057 |
cosine_ndcg@10 | 0.8053 |
cosine_mrr@10 | 0.7726 |
cosine_map@100 | 0.7764 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6757 |
cosine_accuracy@3 | 0.8114 |
cosine_accuracy@5 | 0.85 |
cosine_accuracy@10 | 0.8843 |
cosine_precision@1 | 0.6757 |
cosine_precision@3 | 0.2705 |
cosine_precision@5 | 0.17 |
cosine_precision@10 | 0.0884 |
cosine_recall@1 | 0.6757 |
cosine_recall@3 | 0.8114 |
cosine_recall@5 | 0.85 |
cosine_recall@10 | 0.8843 |
cosine_ndcg@10 | 0.7836 |
cosine_mrr@10 | 0.7509 |
cosine_map@100 | 0.7558 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 4 tokens
- mean: 47.19 tokens
- max: 512 tokens
- min: 7 tokens
- mean: 20.59 tokens
- max: 41 tokens
- Samples:
positive anchor For the year ended December 31, 2023, $305 million was recorded as a distribution against retained earnings for dividends.
How much in dividends was recorded against retained earnings in 2023?
In February 2023, we announced a 10% increase in our quarterly cash dividend to $2.09 per share.
By how much did the company increase its quarterly cash dividend in February 2023?
Depreciation and amortization totaled $4,856 as recorded in the financial statements.
How much did depreciation and amortization total to in the financial statements?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 40per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 20lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 40per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 20max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.9114 | 9 | - | 0.7124 | 0.7361 | 0.7366 | 0.6672 | 0.7443 |
1.0127 | 10 | 2.0952 | - | - | - | - | - |
1.9241 | 19 | - | 0.7437 | 0.7561 | 0.7628 | 0.7172 | 0.7653 |
2.0253 | 20 | 1.1175 | - | - | - | - | - |
2.9367 | 29 | - | 0.7623 | 0.7733 | 0.7694 | 0.7288 | 0.7723 |
3.0380 | 30 | 0.6104 | - | - | - | - | - |
3.9494 | 39 | - | 0.7723 | 0.7746 | 0.7804 | 0.7405 | 0.7789 |
4.0506 | 40 | 0.4106 | - | - | - | - | - |
4.9620 | 49 | - | 0.7777 | 0.7759 | 0.7820 | 0.7475 | 0.7842 |
5.0633 | 50 | 0.314 | - | - | - | - | - |
5.9747 | 59 | - | 0.7802 | 0.7796 | 0.7856 | 0.7548 | 0.7839 |
6.0759 | 60 | 0.2423 | - | - | - | - | - |
6.9873 | 69 | - | 0.7756 | 0.7772 | 0.7834 | 0.7535 | 0.7818 |
7.0886 | 70 | 0.1962 | - | - | - | - | - |
8.0 | 79 | - | 0.7741 | 0.7774 | 0.7841 | 0.7551 | 0.7822 |
8.1013 | 80 | 0.1627 | - | - | - | - | - |
8.9114 | 88 | - | 0.7724 | 0.7752 | 0.7796 | 0.7528 | 0.7816 |
9.1139 | 90 | 0.1379 | - | - | - | - | - |
9.9241 | 98 | - | 0.7691 | 0.7782 | 0.7834 | 0.7559 | 0.7836 |
10.1266 | 100 | 0.1249 | - | - | - | - | - |
10.9367 | 108 | - | 0.7728 | 0.7802 | 0.7831 | 0.7536 | 0.7848 |
11.1392 | 110 | 0.1105 | - | - | - | - | - |
11.9494 | 118 | - | 0.7748 | 0.7785 | 0.7814 | 0.7558 | 0.7851 |
12.1519 | 120 | 0.1147 | - | - | - | - | - |
12.9620 | 128 | - | 0.7756 | 0.7788 | 0.7839 | 0.7550 | 0.7864 |
13.1646 | 130 | 0.098 | - | - | - | - | - |
13.9747 | 138 | - | 0.7767 | 0.7792 | 0.7828 | 0.7557 | 0.7873 |
14.1772 | 140 | 0.0927 | - | - | - | - | - |
14.9873 | 148 | - | 0.7758 | 0.7804 | 0.7847 | 0.7569 | 0.7892 |
15.1899 | 150 | 0.0921 | - | - | - | - | - |
16.0 | 158 | - | 0.7760 | 0.7794 | 0.7831 | 0.7551 | 0.7873 |
16.2025 | 160 | 0.0896 | - | - | - | - | - |
16.9114 | 167 | - | 0.7753 | 0.7799 | 0.7841 | 0.7570 | 0.7888 |
17.2152 | 170 | 0.0881 | - | - | - | - | - |
17.9241 | 177 | - | 0.7763 | 0.7787 | 0.7842 | 0.7561 | 0.7867 |
18.2278 | 180 | 0.0884 | 0.7764 | 0.7782 | 0.7833 | 0.7558 | 0.7867 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for NickyNicky/bge-base-financial-matryoshka_test_3
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.710
- Cosine Accuracy@3 on dim 768self-reported0.843
- Cosine Accuracy@5 on dim 768self-reported0.877
- Cosine Accuracy@10 on dim 768self-reported0.914
- Cosine Precision@1 on dim 768self-reported0.710
- Cosine Precision@3 on dim 768self-reported0.281
- Cosine Precision@5 on dim 768self-reported0.175
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.710
- Cosine Recall@3 on dim 768self-reported0.843