image/png

reference data model:

  datasets:
    - lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
      link: https://huggingface.co/datasets/NickyNicky/oasst2_clusters

  model:
    - google/gemma-2b-it
      Link:
        https://huggingface.co/google/gemma-2b-it

  Epoch: 7

  future experts: Cluster_2

  Eval model:
    - link:
        soon

!python -m pip install --upgrade pip
!pip install "torch>=2.1.1" -U
!pip install torchaudio==2.2.0
!pip install -q datasets trl peft bitsandbytes sentencepiece wandb
!pip install -q accelerate safetensors deepspeed
!pip install -q scipy ninja -U
!pip install -q -U transformers==4.38.0

Version

import torch
torch.__version__
#OUTPUTS: ('2.2.0+cu121' )

How to use


from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
    GenerationConfig,
    TextIteratorStreamer,
)

from transformers import StoppingCriteria, StoppingCriteriaList

import torch

model_id='NickyNicky/gemma-2b-it_oasst2_chatML_Cluster_2_V1'

model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             torch_dtype=torch.bfloat16,
                                             attn_implementation="flash_attention_2",
                                             # load_in_4bit=True,
                                             # low_cpu_mem_usage= True,

                                             )

max_length=2055
print("max_length",max_length)


tokenizer = AutoTokenizer.from_pretrained(model_id,
                                          # use_fast = False,
                                          max_length=max_length,)


class ListOfTokensStoppingCriteria(StoppingCriteria):
    """
    Clase para definir un criterio de parada basado en una lista de tokens específicos.
    """
    def __init__(self, tokenizer, stop_tokens):
        self.tokenizer = tokenizer
        # Codifica cada token de parada y guarda sus IDs en una lista
        self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens]

    def __call__(self, input_ids, scores, **kwargs):
        # Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada
        for stop_token_ids in self.stop_token_ids_list:
            len_stop_tokens = len(stop_token_ids)
            if len(input_ids[0]) >= len_stop_tokens:
                if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids:
                    return True
        return False

# Uso del criterio de parada personalizado
stop_tokens = ["<end_of_turn>"]  # Lista de tokens de parada

# Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada
stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)

# Añade tu criterio de parada a una StoppingCriteriaList
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])



#EXAMPLE #1
txt="""<bos><start_of_turn>system
You are a helpful AI assistant.<end_of_turn>
<start_of_turn>user
Me dices los diferentes tipos de reciclaje que suelen existir en las ciudades europeas<end_of_turn>
<start_of_turn>model
"""

#EXAMPLE #2
txt="""<bos><start_of_turn>system
You are a helpful AI assistant.<end_of_turn>
<start_of_turn>user
What is the meaning of life in the current time?<end_of_turn>
<start_of_turn>model
"""


inputs = tokenizer.encode(txt,
                          return_tensors="pt",
                          add_special_tokens=False).to("cuda:0")
max_new_tokens=1000
generation_config = GenerationConfig(
              max_new_tokens=max_new_tokens,
              temperature=0.55,
              #top_p=0.9,
              #top_k=len_tokens,
              repetition_penalty=1.1, 
              do_sample=True,
          )
outputs = model.generate(generation_config=generation_config,
                         input_ids=inputs,
                         stopping_criteria=stopping_criteria_list,)
tokenizer.decode(outputs[0], skip_special_tokens=False) #True
Downloads last month
20
Safetensors
Model size
2.51B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train NickyNicky/gemma-2b-it_oasst2_chatML_Cluster_2_V1