Vit-GPT2-UCA-UCF-06

This model is a fine-tuned version of nlpconnect/vit-gpt2-image-captioning on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1937
  • Rouge1: 29.6433
  • Rouge2: 8.3589
  • Rougel: 25.256
  • Rougelsum: 25.5825
  • Gen Len: 15.63

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.8073 0.3258 500 0.1840 31.5942 9.2754 27.0997 27.4879 17.309
0.6562 0.6516 1000 0.1805 31.3758 9.5474 26.788 27.1031 16.271
0.6123 0.9774 1500 0.1795 32.219 9.7783 27.4235 27.7537 16.455
0.5502 1.3030 2000 0.1821 31.0914 9.2688 26.5321 26.8962 15.66
0.5281 1.6288 2500 0.1832 31.0119 9.0876 26.4645 26.7925 16.042
0.5085 1.9546 3000 0.1847 31.0869 9.0206 26.2838 26.6729 16.004
0.4584 2.2802 3500 0.1919 29.6475 8.3551 25.1859 25.455 15.92
0.4536 2.6060 4000 0.1922 30.3476 8.7192 25.8444 26.0811 15.981
0.4477 2.9317 4500 0.1937 29.6433 8.3589 25.256 25.5825 15.63

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
239M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for NourFakih/Vit-GPT2-UCA-UCF-06

Finetuned
(9)
this model
Finetunes
1 model