Vit-GPT2-UCA-UCF-06
This model is a fine-tuned version of nlpconnect/vit-gpt2-image-captioning on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1937
- Rouge1: 29.6433
- Rouge2: 8.3589
- Rougel: 25.256
- Rougelsum: 25.5825
- Gen Len: 15.63
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.8073 | 0.3258 | 500 | 0.1840 | 31.5942 | 9.2754 | 27.0997 | 27.4879 | 17.309 |
0.6562 | 0.6516 | 1000 | 0.1805 | 31.3758 | 9.5474 | 26.788 | 27.1031 | 16.271 |
0.6123 | 0.9774 | 1500 | 0.1795 | 32.219 | 9.7783 | 27.4235 | 27.7537 | 16.455 |
0.5502 | 1.3030 | 2000 | 0.1821 | 31.0914 | 9.2688 | 26.5321 | 26.8962 | 15.66 |
0.5281 | 1.6288 | 2500 | 0.1832 | 31.0119 | 9.0876 | 26.4645 | 26.7925 | 16.042 |
0.5085 | 1.9546 | 3000 | 0.1847 | 31.0869 | 9.0206 | 26.2838 | 26.6729 | 16.004 |
0.4584 | 2.2802 | 3500 | 0.1919 | 29.6475 | 8.3551 | 25.1859 | 25.455 | 15.92 |
0.4536 | 2.6060 | 4000 | 0.1922 | 30.3476 | 8.7192 | 25.8444 | 26.0811 | 15.981 |
0.4477 | 2.9317 | 4500 | 0.1937 | 29.6433 | 8.3589 | 25.256 | 25.5825 | 15.63 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support