Fine-tuned with QuicKB
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nuf-hugginface/modernbert-embed-quickb")
# Run inference
sentences = [
'What type of dialogues can LLMs simulate?',
'5. Education and Learning Platforms\nEducational tools like Khanmigo (from Khan Academy) and other tutoring platforms are leveraging LLMs to provide real-time help to students. LLMs can break down complex topics, provide feedback on writing, and simulate Socratic-style dialogues.',
'. For example, integrating an LLM into a customer support chatbot might involve connecting it to a company’s internal knowledge base, enabling it to answer customer questions using accurate, up-to-date information.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.6667 | 0.6667 | 0.6667 | 0.5333 | 0.4667 |
cosine_accuracy@3 | 0.8 | 0.8 | 0.8667 | 0.7333 | 0.6667 |
cosine_accuracy@5 | 1.0 | 0.8667 | 1.0 | 0.8 | 0.8 |
cosine_accuracy@10 | 1.0 | 1.0 | 1.0 | 0.9333 | 0.8667 |
cosine_precision@1 | 0.6667 | 0.6667 | 0.6667 | 0.5333 | 0.4667 |
cosine_precision@3 | 0.2667 | 0.2667 | 0.2889 | 0.2444 | 0.2222 |
cosine_precision@5 | 0.2 | 0.1733 | 0.2 | 0.16 | 0.16 |
cosine_precision@10 | 0.1 | 0.1 | 0.1 | 0.0933 | 0.0867 |
cosine_recall@1 | 0.6667 | 0.6667 | 0.6667 | 0.5333 | 0.4667 |
cosine_recall@3 | 0.8 | 0.8 | 0.8667 | 0.7333 | 0.6667 |
cosine_recall@5 | 1.0 | 0.8667 | 1.0 | 0.8 | 0.8 |
cosine_recall@10 | 1.0 | 1.0 | 1.0 | 0.9333 | 0.8667 |
cosine_ndcg@10 | 0.8311 | 0.8204 | 0.8357 | 0.7204 | 0.6507 |
cosine_mrr@10 | 0.7767 | 0.7652 | 0.7822 | 0.6541 | 0.5822 |
cosine_map@100 | 0.7767 | 0.7652 | 0.7822 | 0.6592 | 0.5889 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 127 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 127 samples:
anchor positive type string string details - min: 8 tokens
- mean: 13.28 tokens
- max: 25 tokens
- min: 13 tokens
- mean: 53.34 tokens
- max: 86 tokens
- Samples:
anchor positive What task mentioned is related to providing answers to inquiries?
. These include text generation, summarization, translation, question answering, code generation, and more.
What do LLMs learn to work effectively?
LLMs work by learning statistical relationships between words and phrases, allowing them to predict and generate language that feels natural. The power of these models lies not only in their size but also in the diversity of tasks they can perform with little to no task-specific training
In which industries is the generalization ability considered useful?
. This generalization ability makes them incredibly useful across industries—from customer service and education to software development and healthcare.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 4gradient_accumulation_steps
: 8learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1tf32
: Falseload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
1.0 | 4 | - | 0.7790 | 0.7120 | 0.7474 | 0.6321 | 0.5684 |
2.0 | 8 | - | 0.8275 | 0.7966 | 0.8091 | 0.6904 | 0.6102 |
2.5 | 10 | 13.4453 | - | - | - | - | - |
3.0 | 12 | - | 0.8311 | 0.8204 | 0.8357 | 0.7178 | 0.6557 |
4.0 | 16 | - | 0.8311 | 0.8204 | 0.8357 | 0.7204 | 0.6507 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.6
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cpu
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Model tree for Nuf-hugginface/modernbert-embed-quickb
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.667
- Cosine Accuracy@3 on dim 768self-reported0.800
- Cosine Accuracy@5 on dim 768self-reported1.000
- Cosine Accuracy@10 on dim 768self-reported1.000
- Cosine Precision@1 on dim 768self-reported0.667
- Cosine Precision@3 on dim 768self-reported0.267
- Cosine Precision@5 on dim 768self-reported0.200
- Cosine Precision@10 on dim 768self-reported0.100
- Cosine Recall@1 on dim 768self-reported0.667
- Cosine Recall@3 on dim 768self-reported0.800