GATE-AraBert-v0
This is a General Arabic Text Embedding trained using SentenceTransformers in a multi-task setup. The system trains on the AllNLI and on the STS dataset.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- Language: ar
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v0")
# Run inference
sentences = [
'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
'لقد مات الكلب',
'شخص طويل القامة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8384 |
spearman_cosine | 0.8389 |
pearson_manhattan | 0.8248 |
spearman_manhattan | 0.8329 |
pearson_euclidean | 0.825 |
spearman_euclidean | 0.8337 |
pearson_dot | 0.8072 |
spearman_dot | 0.8098 |
pearson_max | 0.8384 |
spearman_max | 0.8389 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7908 |
spearman_cosine | 0.7893 |
pearson_manhattan | 0.7923 |
spearman_manhattan | 0.7947 |
pearson_euclidean | 0.7904 |
spearman_euclidean | 0.7934 |
pearson_dot | 0.7404 |
spearman_dot | 0.7354 |
pearson_max | 0.7923 |
spearman_max | 0.7947 |
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Omartificial-Intelligence-Space/GATE-AraBert-v0
Base model
aubmindlab/bert-base-arabertv02Dataset used to train Omartificial-Intelligence-Space/GATE-AraBert-v0
Evaluation results
- ndcg_at_1 on MTEB MIRACLRetrieval (ar)self-reported6.181
- ndcg_at_3 on MTEB MIRACLRetrieval (ar)self-reported7.546
- ndcg_at_5 on MTEB MIRACLRetrieval (ar)self-reported8.949
- ndcg_at_10 on MTEB MIRACLRetrieval (ar)self-reported11.355
- ndcg_at_20 on MTEB MIRACLRetrieval (ar)self-reported13.562
- ndcg_at_100 on MTEB MIRACLRetrieval (ar)self-reported17.749
- ndcg_at_1000 on MTEB MIRACLRetrieval (ar)self-reported21.716
- map_at_1 on MTEB MIRACLRetrieval (ar)self-reported4.181
- map_at_3 on MTEB MIRACLRetrieval (ar)self-reported6.099
- map_at_5 on MTEB MIRACLRetrieval (ar)self-reported6.945