justin13barrett's picture
Update README.md
334df3f verified
|
raw
history blame
2.99 kB
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_keras_callback
model-index:
  - name: >-
      bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract
    results: []

bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract

This model is a fine-tuned version of bert-base-multilingual-cased on a labeled dataset provided by CWTS: [CWTS Labeled Data].

This is NOT the full model being used to tag OpenAlex works with a topic. For that, check out the following github repo: OpenAlex Topic Classification

Model description

The input data is expected to be in the following format:

"<TITLE> {insert-processed-title-here}\n<ABSTRACT> {insert-processed-abstract-here}"

Since this was train

Intended uses & limitations

The model is intended to be used as part of a larger model that also incorporates journal information and citation features. However, this model is good if you want to use it for quickly generating a topic based only on a title/abstract.

Since this model was fine-tuned on a BERT model, all of the biases seen in that model will most likely show up in this model as well.

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 6e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 6e-05, 'decay_steps': 335420, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
4.8075 3.6686 0.3839 0
3.4867 3.3360 0.4337 1
3.1865 3.2005 0.4556 2
2.9969 3.1379 0.4675 3
2.8489 3.0900 0.4746 4
2.7212 3.0744 0.4799 5
2.6035 3.0660 0.4831 6
2.4942 3.0737 0.4846 7

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.13.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0