Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,488 @@ language:
|
|
4 |
- ro
|
5 |
base_model:
|
6 |
- google/gemma-7b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
# Model Card for Model ID
|
@@ -90,7 +572,7 @@ print(tokenizer.decode(outputs[0]))
|
|
90 |
<td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
|
91 |
</tr>
|
92 |
<tr>
|
93 |
-
<td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>53.
|
94 |
</tr>
|
95 |
</tbody>
|
96 |
</table>
|
@@ -123,15 +605,16 @@ print(tokenizer.decode(outputs[0]))
|
|
123 |
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
124 |
</tr>
|
125 |
<tr>
|
126 |
-
<td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.
|
127 |
</tr>
|
128 |
<tr>
|
129 |
-
<td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>97.
|
130 |
</tr>
|
131 |
</tbody>
|
132 |
</table>
|
133 |
|
134 |
|
|
|
135 |
<table>
|
136 |
<tbody>
|
137 |
<tr>
|
@@ -158,7 +641,7 @@ print(tokenizer.decode(outputs[0]))
|
|
158 |
<td><center><strong>(Pearson)</strong></center></td>
|
159 |
</tr>
|
160 |
<tr>
|
161 |
-
<td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.
|
162 |
</tr>
|
163 |
<tr>
|
164 |
<td><em>RoGemma-7b-Instruct</em></td><td><center><em>17.75</em></center></td><td><center><em>28.11</em></center></td><td><center><em>52.02</em></center></td><td><center><em>68.43</em></center></td><td><center><em><strong>73.96</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em><strong>86.45</strong></em></center></td><td><center><em><strong>86.31</strong></em></center></td>
|
|
|
4 |
- ro
|
5 |
base_model:
|
6 |
- google/gemma-7b
|
7 |
+
model-index:
|
8 |
+
- name: OpenLLM-Ro/RoGemma-7b-Instruct
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: text-generation
|
12 |
+
dataset:
|
13 |
+
name: RoMT-Bench
|
14 |
+
type: RoMT-Bench
|
15 |
+
metrics:
|
16 |
+
- name: Score
|
17 |
+
type: Score
|
18 |
+
value: 5.26
|
19 |
+
- task:
|
20 |
+
type: text-generation
|
21 |
+
dataset:
|
22 |
+
name: RoCulturaBench
|
23 |
+
type: RoCulturaBench
|
24 |
+
metrics:
|
25 |
+
- name: Score
|
26 |
+
type: Score
|
27 |
+
value: 3.26
|
28 |
+
- task:
|
29 |
+
type: text-generation
|
30 |
+
dataset:
|
31 |
+
name: Romanian_Academic_Benchmarks
|
32 |
+
type: Romanian_Academic_Benchmarks
|
33 |
+
metrics:
|
34 |
+
- name: Average accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 53.41
|
37 |
+
- task:
|
38 |
+
type: text-generation
|
39 |
+
dataset:
|
40 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
41 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
42 |
+
metrics:
|
43 |
+
- name: Average accuracy
|
44 |
+
type: accuracy
|
45 |
+
value: 52.44
|
46 |
+
- task:
|
47 |
+
type: text-generation
|
48 |
+
dataset:
|
49 |
+
name: OpenLLM-Ro/ro_mmlu
|
50 |
+
type: OpenLLM-Ro/ro_mmlu
|
51 |
+
metrics:
|
52 |
+
- name: Average accuracy
|
53 |
+
type: accuracy
|
54 |
+
value: 54.44
|
55 |
+
- task:
|
56 |
+
type: text-generation
|
57 |
+
dataset:
|
58 |
+
name: OpenLLM-Ro/ro_winogrande
|
59 |
+
type: OpenLLM-Ro/ro_winogrande
|
60 |
+
metrics:
|
61 |
+
- name: Average accuracy
|
62 |
+
type: accuracy
|
63 |
+
value: 69.36
|
64 |
+
- task:
|
65 |
+
type: text-generation
|
66 |
+
dataset:
|
67 |
+
name: OpenLLM-Ro/ro_hellaswag
|
68 |
+
type: OpenLLM-Ro/ro_hellaswag
|
69 |
+
metrics:
|
70 |
+
- name: Average accuracy
|
71 |
+
type: accuracy
|
72 |
+
value: 61.96
|
73 |
+
- task:
|
74 |
+
type: text-generation
|
75 |
+
dataset:
|
76 |
+
name: OpenLLM-Ro/ro_gsm8k
|
77 |
+
type: OpenLLM-Ro/ro_gsm8k
|
78 |
+
metrics:
|
79 |
+
- name: Average accuracy
|
80 |
+
type: accuracy
|
81 |
+
value: 31.06
|
82 |
+
- task:
|
83 |
+
type: text-generation
|
84 |
+
dataset:
|
85 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
86 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
87 |
+
metrics:
|
88 |
+
- name: Average accuracy
|
89 |
+
type: accuracy
|
90 |
+
value: 51.23
|
91 |
+
- task:
|
92 |
+
type: text-generation
|
93 |
+
dataset:
|
94 |
+
name: LaRoSeDa_binary
|
95 |
+
type: LaRoSeDa_binary
|
96 |
+
metrics:
|
97 |
+
- name: Average macro-f1
|
98 |
+
type: macro-f1
|
99 |
+
value: 97.86
|
100 |
+
- task:
|
101 |
+
type: text-generation
|
102 |
+
dataset:
|
103 |
+
name: LaRoSeDa_multiclass
|
104 |
+
type: LaRoSeDa_multiclass
|
105 |
+
metrics:
|
106 |
+
- name: Average macro-f1
|
107 |
+
type: macro-f1
|
108 |
+
value: 65.70
|
109 |
+
- task:
|
110 |
+
type: text-generation
|
111 |
+
dataset:
|
112 |
+
name: LaRoSeDa_binary_finetuned
|
113 |
+
type: LaRoSeDa_binary_finetuned
|
114 |
+
metrics:
|
115 |
+
- name: Average macro-f1
|
116 |
+
type: macro-f1
|
117 |
+
value: 98.43
|
118 |
+
- task:
|
119 |
+
type: text-generation
|
120 |
+
dataset:
|
121 |
+
name: LaRoSeDa_multiclass_finetuned
|
122 |
+
type: LaRoSeDa_multiclass_finetuned
|
123 |
+
metrics:
|
124 |
+
- name: Average macro-f1
|
125 |
+
type: macro-f1
|
126 |
+
value: 87.17
|
127 |
+
- task:
|
128 |
+
type: text-generation
|
129 |
+
dataset:
|
130 |
+
name: WMT_EN-RO
|
131 |
+
type: WMT_EN-RO
|
132 |
+
metrics:
|
133 |
+
- name: Average bleu
|
134 |
+
type: bleu
|
135 |
+
value: 27.91
|
136 |
+
- task:
|
137 |
+
type: text-generation
|
138 |
+
dataset:
|
139 |
+
name: WMT_RO-EN
|
140 |
+
type: WMT_RO-EN
|
141 |
+
metrics:
|
142 |
+
- name: Average bleu
|
143 |
+
type: bleu
|
144 |
+
value: 23.08
|
145 |
+
- task:
|
146 |
+
type: text-generation
|
147 |
+
dataset:
|
148 |
+
name: WMT_EN-RO_finetuned
|
149 |
+
type: WMT_EN-RO_finetuned
|
150 |
+
metrics:
|
151 |
+
- name: Average bleu
|
152 |
+
type: bleu
|
153 |
+
value: 27.99
|
154 |
+
- task:
|
155 |
+
type: text-generation
|
156 |
+
dataset:
|
157 |
+
name: WMT_RO-EN_finetuned
|
158 |
+
type: WMT_RO-EN_finetuned
|
159 |
+
metrics:
|
160 |
+
- name: Average bleu
|
161 |
+
type: bleu
|
162 |
+
value: 39.51
|
163 |
+
- task:
|
164 |
+
type: text-generation
|
165 |
+
dataset:
|
166 |
+
name: XQuAD
|
167 |
+
type: XQuAD
|
168 |
+
metrics:
|
169 |
+
- name: Average exact_match
|
170 |
+
type: exact_match
|
171 |
+
value: 17.75
|
172 |
+
- task:
|
173 |
+
type: text-generation
|
174 |
+
dataset:
|
175 |
+
name: XQuAD
|
176 |
+
type: XQuAD
|
177 |
+
metrics:
|
178 |
+
- name: Average f1
|
179 |
+
type: f1
|
180 |
+
value: 28.11
|
181 |
+
- task:
|
182 |
+
type: text-generation
|
183 |
+
dataset:
|
184 |
+
name: XQuAD_finetuned
|
185 |
+
type: XQuAD_finetuned
|
186 |
+
metrics:
|
187 |
+
- name: Average exact_match
|
188 |
+
type: exact_match
|
189 |
+
value: 52.02
|
190 |
+
- task:
|
191 |
+
type: text-generation
|
192 |
+
dataset:
|
193 |
+
name: XQuAD_finetuned
|
194 |
+
type: XQuAD_finetuned
|
195 |
+
metrics:
|
196 |
+
- name: Average f1
|
197 |
+
type: f1
|
198 |
+
value: 68.43
|
199 |
+
- task:
|
200 |
+
type: text-generation
|
201 |
+
dataset:
|
202 |
+
name: STS
|
203 |
+
type: STS
|
204 |
+
metrics:
|
205 |
+
- name: Average spearman
|
206 |
+
type: spearman
|
207 |
+
value: 73.96
|
208 |
+
- task:
|
209 |
+
type: text-generation
|
210 |
+
dataset:
|
211 |
+
name: STS
|
212 |
+
type: STS
|
213 |
+
metrics:
|
214 |
+
- name: Average pearson
|
215 |
+
type: pearson
|
216 |
+
value: 75.16
|
217 |
+
- task:
|
218 |
+
type: text-generation
|
219 |
+
dataset:
|
220 |
+
name: STS_finetuned
|
221 |
+
type: STS_finetuned
|
222 |
+
metrics:
|
223 |
+
- name: Average spearman
|
224 |
+
type: spearman
|
225 |
+
value: 86.45
|
226 |
+
- task:
|
227 |
+
type: text-generation
|
228 |
+
dataset:
|
229 |
+
name: STS_finetuned
|
230 |
+
type: STS_finetuned
|
231 |
+
metrics:
|
232 |
+
- name: Average pearson
|
233 |
+
type: pearson
|
234 |
+
value: 86.31
|
235 |
+
- task:
|
236 |
+
type: text-generation
|
237 |
+
dataset:
|
238 |
+
name: RoMT-Bench
|
239 |
+
type: RoMT-Bench
|
240 |
+
metrics:
|
241 |
+
- name: First turn
|
242 |
+
type: Score
|
243 |
+
value: 5.92
|
244 |
+
- name: Second turn
|
245 |
+
type: Score
|
246 |
+
value: 4.60
|
247 |
+
- task:
|
248 |
+
type: text-generation
|
249 |
+
dataset:
|
250 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
251 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
252 |
+
metrics:
|
253 |
+
- name: 0-shot
|
254 |
+
type: accuracy
|
255 |
+
value: 50.30
|
256 |
+
- name: 1-shot
|
257 |
+
type: accuracy
|
258 |
+
value: 50.90
|
259 |
+
- name: 3-shot
|
260 |
+
type: accuracy
|
261 |
+
value: 52.53
|
262 |
+
- name: 5-shot
|
263 |
+
type: accuracy
|
264 |
+
value: 53.30
|
265 |
+
- name: 10-shot
|
266 |
+
type: accuracy
|
267 |
+
value: 54.33
|
268 |
+
- name: 25-shot
|
269 |
+
type: accuracy
|
270 |
+
value: 53.30
|
271 |
+
- task:
|
272 |
+
type: text-generation
|
273 |
+
dataset:
|
274 |
+
name: OpenLLM-Ro/ro_mmlu
|
275 |
+
type: OpenLLM-Ro/ro_mmlu
|
276 |
+
metrics:
|
277 |
+
- name: 0-shot
|
278 |
+
type: accuracy
|
279 |
+
value: 54.95
|
280 |
+
- name: 1-shot
|
281 |
+
type: accuracy
|
282 |
+
value: 54.01
|
283 |
+
- name: 3-shot
|
284 |
+
type: accuracy
|
285 |
+
value: 54.03
|
286 |
+
- name: 5-shot
|
287 |
+
type: accuracy
|
288 |
+
value: 54.76
|
289 |
+
- task:
|
290 |
+
type: text-generation
|
291 |
+
dataset:
|
292 |
+
name: OpenLLM-Ro/ro_winogrande
|
293 |
+
type: OpenLLM-Ro/ro_winogrande
|
294 |
+
metrics:
|
295 |
+
- name: 0-shot
|
296 |
+
type: accuracy
|
297 |
+
value: 68.67
|
298 |
+
- name: 1-shot
|
299 |
+
type: accuracy
|
300 |
+
value: 69.46
|
301 |
+
- name: 3-shot
|
302 |
+
type: accuracy
|
303 |
+
value: 68.43
|
304 |
+
- name: 5-shot
|
305 |
+
type: accuracy
|
306 |
+
value: 70.88
|
307 |
+
- task:
|
308 |
+
type: text-generation
|
309 |
+
dataset:
|
310 |
+
name: OpenLLM-Ro/ro_hellaswag
|
311 |
+
type: OpenLLM-Ro/ro_hellaswag
|
312 |
+
metrics:
|
313 |
+
- name: 0-shot
|
314 |
+
type: accuracy
|
315 |
+
value: 61.54
|
316 |
+
- name: 1-shot
|
317 |
+
type: accuracy
|
318 |
+
value: 61.54
|
319 |
+
- name: 3-shot
|
320 |
+
type: accuracy
|
321 |
+
value: 62.08
|
322 |
+
- name: 5-shot
|
323 |
+
type: accuracy
|
324 |
+
value: 62.12
|
325 |
+
- name: 10-shot
|
326 |
+
type: accuracy
|
327 |
+
value: 62.51
|
328 |
+
- task:
|
329 |
+
type: text-generation
|
330 |
+
dataset:
|
331 |
+
name: OpenLLM-Ro/ro_gsm8k
|
332 |
+
type: OpenLLM-Ro/ro_gsm8k
|
333 |
+
metrics:
|
334 |
+
- name: 0-shot
|
335 |
+
type: accuracy
|
336 |
+
value: 24.79
|
337 |
+
- name: 1-shot
|
338 |
+
type: accuracy
|
339 |
+
value: 34.50
|
340 |
+
- name: 3-shot
|
341 |
+
type: accuracy
|
342 |
+
value: 33.89
|
343 |
+
- task:
|
344 |
+
type: text-generation
|
345 |
+
dataset:
|
346 |
+
name: LaRoSeDa_binary
|
347 |
+
type: LaRoSeDa_binary
|
348 |
+
metrics:
|
349 |
+
- name: 0-shot
|
350 |
+
type: macro-f1
|
351 |
+
value: 97.60
|
352 |
+
- name: 1-shot
|
353 |
+
type: macro-f1
|
354 |
+
value: 97.23
|
355 |
+
- name: 3-shot
|
356 |
+
type: macro-f1
|
357 |
+
value: 98.13
|
358 |
+
- name: 5-shot
|
359 |
+
type: macro-f1
|
360 |
+
value: 98.50
|
361 |
+
- task:
|
362 |
+
type: text-generation
|
363 |
+
dataset:
|
364 |
+
name: LaRoSeDa_multiclass
|
365 |
+
type: LaRoSeDa_multiclass
|
366 |
+
metrics:
|
367 |
+
- name: 0-shot
|
368 |
+
type: macro-f1
|
369 |
+
value: 68.53
|
370 |
+
- name: 1-shot
|
371 |
+
type: macro-f1
|
372 |
+
value: 64.84
|
373 |
+
- name: 3-shot
|
374 |
+
type: macro-f1
|
375 |
+
value: 63.62
|
376 |
+
- name: 5-shot
|
377 |
+
type: macro-f1
|
378 |
+
value: 65.83
|
379 |
+
- task:
|
380 |
+
type: text-generation
|
381 |
+
dataset:
|
382 |
+
name: WMT_EN-RO
|
383 |
+
type: WMT_EN-RO
|
384 |
+
metrics:
|
385 |
+
- name: 0-shot
|
386 |
+
type: bleu
|
387 |
+
value: 25.04
|
388 |
+
- name: 1-shot
|
389 |
+
type: bleu
|
390 |
+
value: 28.43
|
391 |
+
- name: 3-shot
|
392 |
+
type: bleu
|
393 |
+
value: 28.87
|
394 |
+
- name: 5-shot
|
395 |
+
type: bleu
|
396 |
+
value: 29.28
|
397 |
+
- task:
|
398 |
+
type: text-generation
|
399 |
+
dataset:
|
400 |
+
name: WMT_RO-EN
|
401 |
+
type: WMT_RO-EN
|
402 |
+
metrics:
|
403 |
+
- name: 0-shot
|
404 |
+
type: bleu
|
405 |
+
value: 4.94
|
406 |
+
- name: 1-shot
|
407 |
+
type: bleu
|
408 |
+
value: 25.33
|
409 |
+
- name: 3-shot
|
410 |
+
type: bleu
|
411 |
+
value: 30.87
|
412 |
+
- name: 5-shot
|
413 |
+
type: bleu
|
414 |
+
value: 31.19
|
415 |
+
- task:
|
416 |
+
type: text-generation
|
417 |
+
dataset:
|
418 |
+
name: XQuAD_EM
|
419 |
+
type: XQuAD_EM
|
420 |
+
metrics:
|
421 |
+
- name: 0-shot
|
422 |
+
type: exact_match
|
423 |
+
value: 36.47
|
424 |
+
- name: 1-shot
|
425 |
+
type: exact_match
|
426 |
+
value: 26.22
|
427 |
+
- name: 3-shot
|
428 |
+
type: exact_match
|
429 |
+
value: 3.19
|
430 |
+
- name: 5-shot
|
431 |
+
type: exact_match
|
432 |
+
value: 5.13
|
433 |
+
- task:
|
434 |
+
type: text-generation
|
435 |
+
dataset:
|
436 |
+
name: XQuAD_F1
|
437 |
+
type: XQuAD_F1
|
438 |
+
metrics:
|
439 |
+
- name: 0-shot
|
440 |
+
type: f1
|
441 |
+
value: 56.83
|
442 |
+
- name: 1-shot
|
443 |
+
type: f1
|
444 |
+
value: 38.53
|
445 |
+
- name: 3-shot
|
446 |
+
type: f1
|
447 |
+
value: 6.88
|
448 |
+
- name: 5-shot
|
449 |
+
type: f1
|
450 |
+
value: 10.19
|
451 |
+
- task:
|
452 |
+
type: text-generation
|
453 |
+
dataset:
|
454 |
+
name: STS
|
455 |
+
type: STS
|
456 |
+
metrics:
|
457 |
+
- name: 0-shot
|
458 |
+
type: spearman
|
459 |
+
value: 70.61
|
460 |
+
- name: 1-shot
|
461 |
+
type: spearman
|
462 |
+
value: 73.53
|
463 |
+
- name: 3-shot
|
464 |
+
type: spearman
|
465 |
+
value: 77.73
|
466 |
+
- task:
|
467 |
+
type: text-generation
|
468 |
+
dataset:
|
469 |
+
name: STS
|
470 |
+
type: STS
|
471 |
+
metrics:
|
472 |
+
- name: 0-shot
|
473 |
+
type: pearson
|
474 |
+
value: 72.28
|
475 |
+
- name: 1-shot
|
476 |
+
type: pearson
|
477 |
+
value: 74.46
|
478 |
+
- name: 3-shot
|
479 |
+
type: pearson
|
480 |
+
value: 78.75
|
481 |
+
datasets:
|
482 |
+
- OpenLLM-Ro/ro_sft_alpaca
|
483 |
+
- OpenLLM-Ro/ro_sft_alpaca_gpt4
|
484 |
+
- OpenLLM-Ro/ro_sft_dolly
|
485 |
+
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4
|
486 |
+
- OpenLLM-Ro/ro_sft_norobots
|
487 |
+
- OpenLLM-Ro/ro_sft_orca
|
488 |
+
- OpenLLM-Ro/ro_sft_camel
|
489 |
---
|
490 |
|
491 |
# Model Card for Model ID
|
|
|
572 |
<td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
|
573 |
</tr>
|
574 |
<tr>
|
575 |
+
<td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>53.41</strong></em></center></td><td><center><em><strong>52.44</strong></em></center></td><td><center><em><strong>54.44</strong></em></center></td><td><center><em><strong>69.36</strong></em></center></td><td><center><em><strong>61.96</strong></em></center></td><td><center><em><strong>31.06</strong></em></center></td><td><center><em><strong>51.23</strong></em></center></td>
|
576 |
</tr>
|
577 |
</tbody>
|
578 |
</table>
|
|
|
605 |
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
606 |
</tr>
|
607 |
<tr>
|
608 |
+
<td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
|
609 |
</tr>
|
610 |
<tr>
|
611 |
+
<td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>97.86</strong></em></center></td><td><center><em><strong>65.70</strong></em></center></td><td><center><em><strong>98.43</strong></em></center></td><td><center><em><strong>87.17</strong></em></center></td><td><center><em><strong>27.91</strong></em></center></td><td><center><em>23.08</em></center></td><td><center><em><strong>27.99</strong></em></center></td><td><center><em><strong>39.51</strong></em></center></td>
|
612 |
</tr>
|
613 |
</tbody>
|
614 |
</table>
|
615 |
|
616 |
|
617 |
+
|
618 |
<table>
|
619 |
<tbody>
|
620 |
<tr>
|
|
|
641 |
<td><center><strong>(Pearson)</strong></center></td>
|
642 |
</tr>
|
643 |
<tr>
|
644 |
+
<td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td>
|
645 |
</tr>
|
646 |
<tr>
|
647 |
<td><em>RoGemma-7b-Instruct</em></td><td><center><em>17.75</em></center></td><td><center><em>28.11</em></center></td><td><center><em>52.02</em></center></td><td><center><em>68.43</em></center></td><td><center><em><strong>73.96</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em><strong>86.45</strong></em></center></td><td><center><em><strong>86.31</strong></em></center></td>
|