metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:578402
- loss:BinaryCrossEntropyLoss
base_model: answerdotai/ModernBERT-base
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: ModernBERT-base trained on GooAQ
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: gooaq dev
type: gooaq-dev
metrics:
- type: map
value: 0.7283
name: Map
- type: mrr@10
value: 0.7272
name: Mrr@10
- type: ndcg@10
value: 0.7716
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.4489
name: Map
- type: mrr@10
value: 0.4376
name: Mrr@10
- type: ndcg@10
value: 0.5096
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3159
name: Map
- type: mrr@10
value: 0.4737
name: Mrr@10
- type: ndcg@10
value: 0.3176
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.4904
name: Map
- type: mrr@10
value: 0.5075
name: Mrr@10
- type: ndcg@10
value: 0.5388
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.4184
name: Map
- type: mrr@10
value: 0.4729
name: Mrr@10
- type: ndcg@10
value: 0.4553
name: Ndcg@10
ModernBERT-base trained on GooAQ
This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("Oysiyl/reranker-ModernBERT-base-gooaq-bce")
# Get scores for pairs of texts
pairs = [
['what do you do with a degree in criminal justice?', "['Police Patrol Officer. Job Description. ... ', 'Criminal Investigators & Special Agents. Job Description. ... ', 'Private Detective or Investigator. ... ', 'First-Line Police Supervisor. ... ', 'Correctional Officer. ... ', 'Probation and Parole Officers. ... ', 'Postsecondary Criminal Justice & Law Enforcement Teachers.']"],
['what do you do with a degree in criminal justice?', "['Prison officer. ... ', 'Police officer. ... ', 'Detective. ... ', 'Criminologist. ... ', 'Probation officer. ... ', 'Forensic scientist. ... ', 'Crime Scene investigator. ... ', 'Court reporter.']"],
['what do you do with a degree in criminal justice?', "A high school diploma is required to work as a detective. In some cases a bachelor's degree in criminal justice or law enforcement may be needed. Experience in law enforcement is usually required, but the amount varies by employer."],
['what do you do with a degree in criminal justice?', "['Court Reporter. ... ', 'Criminal Intelligence Analyst. ... ', 'Forensic Accountant. ... ', 'Police Officer and Police Support Roles. ... ', 'Immigration, Customs and Border Roles. ... ', 'Prison Officer. ... ', 'Probation Officer. ... ', 'Scene of Crime Officer.']"],
['what do you do with a degree in criminal justice?', "Crime Scene Investigator Education and Training Although a high school diploma or equivalent is a minimum requirement for some positions, many police departments and law enforcement agencies prefer a minimum of an associate's (two-year) or a bachelor's (four-year) degree in criminal justice or a natural science."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'what do you do with a degree in criminal justice?',
[
"['Police Patrol Officer. Job Description. ... ', 'Criminal Investigators & Special Agents. Job Description. ... ', 'Private Detective or Investigator. ... ', 'First-Line Police Supervisor. ... ', 'Correctional Officer. ... ', 'Probation and Parole Officers. ... ', 'Postsecondary Criminal Justice & Law Enforcement Teachers.']",
"['Prison officer. ... ', 'Police officer. ... ', 'Detective. ... ', 'Criminologist. ... ', 'Probation officer. ... ', 'Forensic scientist. ... ', 'Crime Scene investigator. ... ', 'Court reporter.']",
"A high school diploma is required to work as a detective. In some cases a bachelor's degree in criminal justice or law enforcement may be needed. Experience in law enforcement is usually required, but the amount varies by employer.",
"['Court Reporter. ... ', 'Criminal Intelligence Analyst. ... ', 'Forensic Accountant. ... ', 'Police Officer and Police Support Roles. ... ', 'Immigration, Customs and Border Roles. ... ', 'Prison Officer. ... ', 'Probation Officer. ... ', 'Scene of Crime Officer.']",
"Crime Scene Investigator Education and Training Although a high school diploma or equivalent is a minimum requirement for some positions, many police departments and law enforcement agencies prefer a minimum of an associate's (two-year) or a bachelor's (four-year) degree in criminal justice or a natural science.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
gooaq-dev
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": false }
Metric | Value |
---|---|
map | 0.7283 (+0.1972) |
mrr@10 | 0.7272 (+0.2033) |
ndcg@10 | 0.7716 (+0.1804) |
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100
,NanoNFCorpus_R100
andNanoNQ_R100
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": true }
Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.4489 (-0.0407) | 0.3159 (+0.0549) | 0.4904 (+0.0708) |
mrr@10 | 0.4376 (-0.0399) | 0.4737 (-0.0262) | 0.5075 (+0.0808) |
ndcg@10 | 0.5096 (-0.0309) | 0.3176 (-0.0074) | 0.5388 (+0.0382) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
Metric | Value |
---|---|
map | 0.4184 (+0.0284) |
mrr@10 | 0.4729 (+0.0049) |
ndcg@10 | 0.4553 (-0.0000) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 578,402 training samples
- Columns:
question
,answer
, andlabel
- Approximate statistics based on the first 1000 samples:
question answer label type string string int details - min: 20 characters
- mean: 43.36 characters
- max: 95 characters
- min: 55 characters
- mean: 252.47 characters
- max: 386 characters
- 0: ~82.80%
- 1: ~17.20%
- Samples:
question answer label what do you do with a degree in criminal justice?
['Police Patrol Officer. Job Description. ... ', 'Criminal Investigators & Special Agents. Job Description. ... ', 'Private Detective or Investigator. ... ', 'First-Line Police Supervisor. ... ', 'Correctional Officer. ... ', 'Probation and Parole Officers. ... ', 'Postsecondary Criminal Justice & Law Enforcement Teachers.']
1
what do you do with a degree in criminal justice?
['Prison officer. ... ', 'Police officer. ... ', 'Detective. ... ', 'Criminologist. ... ', 'Probation officer. ... ', 'Forensic scientist. ... ', 'Crime Scene investigator. ... ', 'Court reporter.']
0
what do you do with a degree in criminal justice?
A high school diploma is required to work as a detective. In some cases a bachelor's degree in criminal justice or law enforcement may be needed. Experience in law enforcement is usually required, but the amount varies by employer.
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 4load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1374 (-0.4539) | 0.0392 (-0.5012) | 0.2824 (-0.0427) | 0.0371 (-0.4635) | 0.1196 (-0.3358) |
0.0000 | 1 | 1.3234 | - | - | - | - | - |
0.0277 | 1000 | 1.1925 | - | - | - | - | - |
0.0553 | 2000 | 0.9574 | - | - | - | - | - |
0.0830 | 3000 | 0.7563 | - | - | - | - | - |
0.1106 | 4000 | 0.7247 | 0.7171 (+0.1259) | 0.5045 (-0.0359) | 0.3093 (-0.0158) | 0.5701 (+0.0694) | 0.4613 (+0.0059) |
0.1383 | 5000 | 0.6744 | - | - | - | - | - |
0.1660 | 6000 | 0.6876 | - | - | - | - | - |
0.1936 | 7000 | 0.6446 | - | - | - | - | - |
0.2213 | 8000 | 0.6519 | 0.7319 (+0.1407) | 0.5106 (-0.0298) | 0.3346 (+0.0095) | 0.6054 (+0.1048) | 0.4835 (+0.0282) |
0.2490 | 9000 | 0.6339 | - | - | - | - | - |
0.2766 | 10000 | 0.6168 | - | - | - | - | - |
0.3043 | 11000 | 0.6005 | - | - | - | - | - |
0.3319 | 12000 | 0.6363 | 0.7463 (+0.1550) | 0.5087 (-0.0317) | 0.3075 (-0.0176) | 0.5757 (+0.0751) | 0.4640 (+0.0086) |
0.3596 | 13000 | 0.5882 | - | - | - | - | - |
0.3873 | 14000 | 0.5888 | - | - | - | - | - |
0.4149 | 15000 | 0.5824 | - | - | - | - | - |
0.4426 | 16000 | 0.5882 | 0.7487 (+0.1574) | 0.5277 (-0.0127) | 0.3215 (-0.0036) | 0.5609 (+0.0603) | 0.4701 (+0.0147) |
0.4702 | 17000 | 0.5661 | - | - | - | - | - |
0.4979 | 18000 | 0.5758 | - | - | - | - | - |
0.5256 | 19000 | 0.556 | - | - | - | - | - |
0.5532 | 20000 | 0.5524 | 0.7556 (+0.1644) | 0.5419 (+0.0014) | 0.3191 (-0.0059) | 0.6132 (+0.1125) | 0.4914 (+0.0360) |
0.5809 | 21000 | 0.5546 | - | - | - | - | - |
0.6086 | 22000 | 0.563 | - | - | - | - | - |
0.6362 | 23000 | 0.5369 | - | - | - | - | - |
0.6639 | 24000 | 0.5492 | 0.7570 (+0.1658) | 0.4779 (-0.0626) | 0.2881 (-0.0369) | 0.5079 (+0.0073) | 0.4246 (-0.0307) |
0.6915 | 25000 | 0.5443 | - | - | - | - | - |
0.7192 | 26000 | 0.5522 | - | - | - | - | - |
0.7469 | 27000 | 0.5323 | - | - | - | - | - |
0.7745 | 28000 | 0.5167 | 0.7695 (+0.1782) | 0.4941 (-0.0463) | 0.3167 (-0.0083) | 0.5194 (+0.0188) | 0.4434 (-0.0119) |
0.8022 | 29000 | 0.4998 | - | - | - | - | - |
0.8299 | 30000 | 0.5326 | - | - | - | - | - |
0.8575 | 31000 | 0.5262 | - | - | - | - | - |
0.8852 | 32000 | 0.5136 | 0.7682 (+0.1769) | 0.5004 (-0.0400) | 0.3273 (+0.0023) | 0.5318 (+0.0311) | 0.4531 (-0.0022) |
0.9128 | 33000 | 0.5145 | - | - | - | - | - |
0.9405 | 34000 | 0.5038 | - | - | - | - | - |
0.9682 | 35000 | 0.5236 | - | - | - | - | - |
0.9958 | 36000 | 0.5347 | 0.7716 (+0.1804) | 0.5096 (-0.0309) | 0.3176 (-0.0074) | 0.5388 (+0.0382) | 0.4553 (-0.0000) |
-1 | -1 | - | 0.7716 (+0.1804) | 0.5096 (-0.0309) | 0.3176 (-0.0074) | 0.5388 (+0.0382) | 0.4553 (-0.0000) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu128
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}