Modular Florence2 block that can also be used with Mellon.
How to use
With Mellon
The node can be used with the default installation of Mellon using the Dynamic Block Node
Using it with code
Captioning
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<CAPTION>" # can also be <DETAILED_CAPTION> or <MORE_DETAILED_CAPTION>
annotation_prompt = ""
output = pipe(image=image, annotation_task=annotation_task, annotation_prompt=annotation_prompt).annotations[0]
print(output)
Caption
A man and a woman writing on a white board.
Detailed Caption
In this image we can see a man and a woman holding markers in their hands. We can also see a board with some text on it.
More Detailed Caption
A man and a woman are standing in front of a whiteboard. The woman is writing on a black marker. The man is wearing a blue shirt. The whiteboard has writing on it. The writing on the whiteboard is black. The people are looking at each other. There is writing in black marker on the board. There are drawings on whiteboard behind the people.
Object Detection
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<OD>"
annotation_prompt = ""
output = pipe(
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="bounding_box",
).images[0]
output.save("output.png")
Dense Region Caption
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<DENSE_REGION_CAPTION>"
annotation_prompt = ""
output = pipe(
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="bounding_box",
).images[0]
output.save("output.png")
Region Proposal
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<REGION_PROPOSAL>"
annotation_prompt = ""
output = pipe(
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="bounding_box",
).images[0]
output.save("output.png")
Phrase Grounding
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<CAPTION_TO_PHRASE_GROUNDING>"
annotation_prompt = "man"
output = pipe(
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="bounding_box", # can also use `mask_image` and `mask_overlay`
).images[0]
output.save("output.png")
Referring Expression Segmentation
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<REFERRING_EXPRESSION_SEGMENTATION>"
annotation_prompt = "man"
output = pipe(
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="mask_image", # can also use `mask_overlay`
).images[0]
output.save("output.png")
Open Vocabulary Detection
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<OPEN_VOCABULARY_DETECTION>"
annotation_prompt = "man with a beard"
output = pipe(
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="bounding_box",
).images[0]
output.save("output.png")
OCR
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<OCR>"
annotation_prompt = ""
output = pipe(
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="bounding_box",
).annotations[0]
print(output)
The Diffuser's library byHugging Face makes it easyfor developers to run imagegeneration and influenceusing state-of-the-astdiffusion models withjust a few lines of codehuman eou
OCR with region
import torch
from diffusers.modular_pipelines import ModularPipeline
from diffusers.utils import load_image
pipe = ModularPipeline.from_pretrained("OzzyGT/florence-2-block", trust_remote_code=True)
pipe.load_components(torch_dtype=torch.float16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/OzzyGT/diffusers-examples/resolve/main/florence-2/white_board_people.png"
)
annotation_task = "<OCR_WITH_REGION>"
annotation_prompt = ""
output = pipe(
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="bounding_box",
).images[0]
output.save("output.png")
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support