metadata
base_model: NazaGara/NER-fine-tuned-BETO
tags:
- generated_from_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: beto-finetuned-ner-1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2002
type: conll2002
config: es
split: validation
args: es
metrics:
- name: Precision
type: precision
value: 0.861199
- name: Recall
type: recall
value: 0.871094
- name: F1
type: f1
value: 0.866118
- name: Accuracy
type: accuracy
value: 0.972756
beto-finetuned-ner-1
Este es modelo resultado de un finetuning de NazaGara/NER-fine-tuned-BETO sobre el conll2002 dataset. Los siguientes son los resultados sobre el conjunto de evaluación:
- Loss: 0.002421
- Precision: 0.861199
- Recall: 0.871094
- F1: 0.8851
- Accuracy: 0,972756
Model description
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- weight_decay: 0.001
- num_epochs: 8
Training results
Epoch | Training Loss | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|
1 | 0.004500 | 0.271499 | 0.854365 | 0.868107 | 0.861181 | 0.971268 |
2 | 0.004000 | 0.283811 | 0.839605 | 0.840763 | 0.840184 | 0.966170 |
3 | 0.003900 | 0.261076 | 0.849651 | 0.867417 | 0.858442 | 0.970664 |
4 | 0.002600 | 0.277270 | 0.858379 | 0.866268 | 0.862306 | 0.971702 |
5 | 0.002000 | 0.270548 | 0.859149 | 0.871783 | 0.865420 | 0.971563 |
6 | 0.001800 | 0.279797 | 0.857305 | 0.868336 | 0.862785 | 0.971609 |
7 | 0.001800 | 0.281091 | 0.857467 | 0.868107 | 0.862754 | 0.971966 |
8 | 0.001100 | 0.284128 | 0.861199 | 0.871094 | 0.866118 | 0.972756 |