The key ingredient of Implicit PRM is the reward representation, as demonstrated below:
β¨
Proposition : Consider an ORM where the reward is parameterized by the log-likelihood ratio of two causal LMs, i.e.
r Ο ( y ) : = Ξ² log β‘ Ο Ο ( y ) Ο ref ( y ) .
r_\phi(\mathbf{y}) := \beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})}.
r Ο β ( y ) := Ξ² log Ο ref β ( y ) Ο Ο β ( y ) β .
Define
q Ο t ( y < t , y t ) : = β i = 1 t Ξ² log β‘ Ο Ο ( y i β£ y < i ) Ο ref ( y i β£ y < i ) .
q_\phi^t(\mathbf{y}_{<t}, y_t) := \sum_{i=1}^{t} \beta \log \frac{\pi_\phi(y_{i}|\mathbf{y}_{<i})}{\pi_\text{ref}(y_{i}|\mathbf{y}_{<i})}.
q Ο t β ( y < t β , y t β ) := i = 1 β t β Ξ² log Ο ref β ( y i β β£ y < i β ) Ο Ο β ( y i β β£ y < i β ) β .
is the exponential average of r ΞΈ r_\thetar ΞΈ β at step t tt .
q Ο t ( y < t , y t ) = Ξ² log β‘ E Ο ref ( y β£ y β€ t ) [ e 1 Ξ² r Ο ( y ) ]
q_\phi^t(\mathbf{y}_{<t}, y_t) = \beta \log \mathbb{E}{\pi_\text{ref}(\mathbf{y}|\mathbf{y}_{\leq t})} \left[ e^{\frac{1}{\beta} r_\phi(\mathbf{y})} \right]
q Ο t β ( y < t β , y t β ) = Ξ² log E Ο ref β ( y β£ y β€ t β ) [ e Ξ² 1 β r Ο β ( y ) ]
Hence, q ΞΈ t q_\theta^tq ΞΈ t β οΏΌrepresents an exact expectation of outcome reward r ΞΈ r_\thetar ΞΈ β at step t tt , i.e., the Q value.
The proposition indicates that when modeling
r Ο ( y ) : = Ξ² log β‘ Ο Ο ( y ) Ο ref ( y )
r_\phi(\mathbf{y}) := \beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})}
r Ο β ( y ) := Ξ² log Ο ref β ( y ) Ο Ο β ( y ) β
to train an ORM with the standard pipeline, where Ξ² \betaΞ² is a hyperparameter, Ο \phiΟ can implicitly learn a Q function. Hence, process reward r Ο t r_\phi^tr Ο t β can be obtained by:
r Ο t : = q Ο t β q Ο t β 1 = Ξ² log β‘ Ο Ο ( y t β£ y < t ) Ο ref ( y t β£ y < t ) .
r_\phi^t := q_\phi^t - q_\phi^{t-1} = \beta \log \frac{\pi_\phi(y_{t}|\mathbf{y}_{<t})}{\pi_\text{ref}(y_{t}|\mathbf{y}_{<t})}.
r Ο t β := q Ο t β β q Ο t β 1 β = Ξ² log Ο ref β ( y t β β£ y < t β ) Ο Ο β ( y t β β£ y < t β ) β .
Therefore, we can indeed obtain PRMs simply by collecting response-level data and training an ORM, without any burden of annotating step labels.
The proposition is agnostic to specific choices of the training objective of ORMs . It can be instantiated with different objectives as vanilla ORM training, with the only difference being substituting the r Ο ( y ) r_\phi \left( \mathbf{y} \right)r Ο β ( y ) with Ξ² log β‘ Ο Ο ( y ) Ο ref ( y ) \beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})}Ξ² log Ο ref β ( y ) Ο Ο β ( y ) β .
For example, DPO already meets our assumption and serves as a strong variant, while in this work, we instantiate our implicit PRM with cross entropy (CE) loss due to memory efficiency:
L C E = l β
log β‘ Ο ( Ξ² log β‘ Ο Ο ( y ) Ο ref ( y ) ) + ( 1 β l ) β
log β‘ [ 1 β Ο ( Ξ² log β‘ Ο Ο ( y ) Ο ref ( y ) ) ]
\small \mathcal{L}_{CE} = l \cdot \log \sigma \left( \beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})} \right) + (1 - l) \cdot \log \left[ 1 - \sigma \left( \beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})} \right) \right]
L CE β = l β
log Ο ( Ξ² log Ο ref β ( y ) Ο Ο β ( y ) β ) + ( 1 β l ) β
log [ 1 β Ο ( Ξ² log Ο ref β ( y ) Ο Ο β ( y ) β ) ]
We applied the above L C E L_{CE}L CE β to train implicit PRM. We used a learning rate of 5e-7 and a batch-size of 64 for training.
Usage
We show an example leveraging EurusPRM-Stage1 below:
import torch
from transformers import AutoTokenizer,AutoModelForCausalLM
coef=0.001
d = {'query' :'Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$' ,
'answer' :[
"Step 1: To convert the point (0,3) from rectangular coordinates to polar coordinates, we need to find the radius (r) and the angle theta (\u03b8)." ,
"Step 2: Find the radius (r). The radius is the distance from the origin (0,0) to the point (0,3). Since the x-coordinate is 0, the distance is simply the absolute value of the y-coordinate. So, r = |3| = 3." ,
"Step 3: Find the angle theta (\u03b8). The angle theta is measured counterclockwise from the positive x-axis. Since the point (0,3) lies on the positive y-axis, the angle theta is 90 degrees or \u03c0\/2 radians." ,
"Step 4: Write the polar coordinates. The polar coordinates are (r, \u03b8), where r > 0 and 0 \u2264 \u03b8 < 2\u03c0. In this case, r = 3 and \u03b8 = \u03c0\/2.\n\nTherefore, the polar coordinates of the point (0,3) are (3, \u03c0\/2).\n\n\n\\boxed{(3,\\frac{\\pi}{2})}"
]
}
model = AutoModelForCausalLM.from_pretrained('PRIME-RL/EurusPRM-Stage1' )
tokenizer = AutoTokenizer.from_pretrained('PRIME-RL/EurusPRM-Stage1' )
ref_model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen2.5-Math-7B-Instruct' )
input_ids = tokenizer.apply_chat_template([
{"role" : "user" , "content" : d["query" ]},
{"role" : "assistant" , "content" : "\n\n" .join(d["answer" ])},
], tokenize=True , add_generation_prompt=False ,return_tensors='pt' )
attention_mask = input_ids!=tokenizer.pad_token_id
step_last_tokens = []
for step_num in range (0 , len (d["answer" ])+1 ):
conv = tokenizer.apply_chat_template([
{"role" :"user" , "content" :d["query" ]},
{"role" :"assistant" , "content" :"\n\n" .join(d["answer" ][:step_num])},
], tokenize=False , add_generation_prompt=False )
conv = conv.strip()
if step_num!=0 and step_num!=len (d['answer' ]):
conv+='\n\n'
currect_ids = tokenizer.encode(conv,add_special_tokens=False )
step_last_tokens.append(len (currect_ids) - 2 )
inputs = {'input_ids' :input_ids,'attention_mask' :attention_mask,'labels' :input_ids}
label_mask = torch.tensor([[0 ]*step_last_tokens[0 ]+[1 ]*(input_ids.shape[-1 ]-step_last_tokens[0 ])])
step_last_tokens = torch.tensor([step_last_tokens])
def get_logps (model,inputs ):
logits = model(input_ids=inputs['input_ids' ], attention_mask=inputs['attention_mask' ]).logits
labels = inputs['labels' ][:, 1 :].clone().long()
logits = logits[:, :-1 , :]
labels[labels == -100 ] = 0
per_token_logps = torch.gather(logits.log_softmax(-1 ), dim=2 , index=labels.unsqueeze(2 )).squeeze(2 )
return per_token_logps
with torch.no_grad():
per_token_logps = get_logps(model, inputs)
ref_per_token_logps = get_logps(ref_model,inputs)
raw_reward = per_token_logps - ref_per_token_logps
beta_reward = coef * raw_reward * label_mask[:,1 :]
beta_reward = beta_reward.cumsum(-1 )
beta_reward = beta_reward.gather(dim=-1 , index=step_last_tokens[:,1 :])
print (beta_reward)
Evaluation
Evaluation Code
We use codes in Implicit PRM to evaluate the performance of EurusPRM. The reference model is Qwen2.5-Math-7B-Instruct .
Evaluation Base Model
We adopt Eurus-2-7B-SFT , Qwen2.5-7B-Instruct and Llama-3.1-70B-Instruct as generation models to evaluate the performance of our implicit PRM. For all models, we set the sampling temperature as 0.5, p of the top-p sampling as 1.
Best-of-N Sampling
We use Best-of-64 as our evaluation metric. The weighting methods are different for several PRMs below.
For Skywork-o1-Open-PRM-Qwen-2.5-7B , we use simple average reward across all steps.
For EurusPRM-Stage 1, we use the minimum reward across all steps.
For EurusPRM-Stage 2, we use the accumulative rewards.
Eurus-2-7B-SFT
Method
Reward Model
MATH
AMC
AIME_2024
OlympiadBench
Minerva Math
Avg
Greedy Pass @ 1
N/A
65.1
30.1
3.3
29.8
32.7
32.2
Majority Voting @ 64
N/A
65.6
53.0
13.3
39.1
22.4
38.7
Best-of-64
Skywork-o1-Open-PRM-Qwen-2.5-7B
47.2
45.8
10.0
32.3
16.2
30.3
EurusPRM-Stage 1
44.6
41.0
6.7
32.9
17.3
28.5
EurusPRM-Stage 2
47.2
43.4
13.3
33.8
19.2
31.4
Weighted Best-of-64
Skywork-o1-Open-PRM-Qwen-2.5-7B
64.6
55.4
13.3
41.3
23.2
39.6
EurusPRM-Stage 1
66.0
54.2
13.3
39.6
29.0
40.4
EurusPRM-Stage 2
66.0
54.2
13.3
39.7
29.0
40.4
Llama-3.1-70B-Instruct
Method
Reward Model
MATH
AMC
AIME 2024
OlympiadBench
Minerva Math
Avg
Greedy Pass @ 1
N/A
64.6
30.1
16.7
31.9
35.3
35.7
Majority Voting @ 64
N/A
80.2
53.0
26.7
40.4
38.6
47.8
Best-of-N @ 64
Skywork-o1-Open-PRM-Qwen-2.5-7B
77.8
56.6
23.3
39.0
31.6
45.7
EurusPRM-Stage 1
77.8
44.6
26.7
35.3
41.5
45.2
EurusPRM-Stage 2
80.6
59.0
20.0
37.6
44.9
48.4
Weighted Best-of-64
Skywork-o1-Open-PRM-Qwen-2.5-7B
81.2
56.6
23.3
42.4
38.2
48.3
EurusPRM-Stage 1
80.4
53.0
26.7
40.9
46.7
49.5
EurusPRM-Stage 2
80.4
53.0
26.7
41.0
46.3
49.5
Qwen2.5-7B-Instruct
Method
Reward Model
MATH
AMC
AIME 2024
OlympiadBench
Minerva Math
Avg
Greedy Pass @ 1
N/A
73.3
47.0
13.3
39.4
35.3
41.7
Majority Voting @ 64
N/A
82.0
53.0
16.7
43.0
36.4
46.2
Best-of-N @ 64
Skywork-o1-Open-PRM-Qwen-2.5-7B
85.2
60.2
20.0
44.7
32.7
48.6
EurusPRM-Stage 1
81.8
47.0
16.7
40.1
41.5
45.4
EurusPRM-Stage 2
86.0
59.0
16.7
41.4
41.5
48.9
Weighted Best-of-64
Skywork-o1-Open-PRM-Qwen-2.5-7B
83.6
55.4
13.3
43.7
36.8
46.6
EurusPRM-Stage 1
82.6
53.0
16.7
42.7
45.2
48.0
EurusPRM-Stage 2
84.8
53.0
16.7
43.2
45.6
48.7
Citation
@misc{cui2024process,
title={Process Reinforcement through Implicit Rewards},
author={Ganqu Cui and Lifan Yuan and Zefan Wang and Hanbin Wang and Wendi Li and Bingxiang He and Yuchen Fan and Tianyu Yu and Qixin Xu and Weize Chen and Jiarui Yuan and Huayu Chen and Kaiyan Zhang and Xingtai Lv and Shuo Wang and Yuan Yao and Hao Peng and Yu Cheng and Zhiyuan Liu and Maosong Sun and Bowen Zhou and Ning Ding},
year={2025}
}
@article{yuan2024implicitprm,
title={Free Process Rewards without Process Labels},
author={Lifan Yuan and Wendi Li and Huayu Chen and Ganqu Cui and Ning Ding and Kaiyan Zhang and Bowen Zhou and Zhiyuan Liu and Hao Peng},
journal={arXiv preprint arXiv:2412.01981},
year={2024}
}