distilbert-base-multilingual-cased-multilabel-indonesian-hate-speech-new

This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4308
  • F1: 0.7237
  • Roc Auc: 0.8286
  • Accuracy: 0.6372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.3684 1.0 659 0.2877 0.6267 0.7611 0.5059
0.2774 2.0 1318 0.2626 0.6599 0.7804 0.5522
0.2315 3.0 1977 0.2808 0.6678 0.7768 0.5942
0.1583 4.0 2636 0.2750 0.7008 0.8130 0.6000
0.1257 5.0 3295 0.3320 0.6867 0.7887 0.6160
0.11 6.0 3954 0.3322 0.7114 0.8170 0.6226
0.0686 7.0 4613 0.3504 0.7123 0.8199 0.6241
0.0549 8.0 5272 0.3812 0.7151 0.8230 0.6276
0.0482 9.0 5931 0.4221 0.7075 0.8093 0.6380
0.0313 10.0 6590 0.4275 0.7130 0.8175 0.6317
0.0279 11.0 7249 0.4308 0.7237 0.8286 0.6372
0.0224 12.0 7908 0.4549 0.7222 0.8256 0.6439
0.0146 13.0 8567 0.4581 0.7235 0.8275 0.6418
0.0143 14.0 9226 0.4685 0.7182 0.8246 0.6363
0.0118 15.0 9885 0.4715 0.7182 0.8237 0.6384

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for PaceKW/distilbert-base-multilingual-cased-multilabel-indonesian-hate-speech-new

Finetuned
(287)
this model