ner-bert-lenerbr-large-v1
This model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: 0.1337
- Precision: 0.8659
- Recall: 0.9028
- F1: 0.8840
- Accuracy: 0.9754
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0521 | 1.0 | 979 | 0.1236 | 0.8260 | 0.8626 | 0.8439 | 0.9676 |
0.0338 | 2.0 | 1958 | 0.2221 | 0.6535 | 0.9185 | 0.7636 | 0.9536 |
0.0201 | 3.0 | 2937 | 0.1381 | 0.7573 | 0.9084 | 0.8260 | 0.9679 |
0.0163 | 4.0 | 3916 | 0.1337 | 0.8659 | 0.9028 | 0.8840 | 0.9754 |
0.0132 | 5.0 | 4895 | 0.1462 | 0.8392 | 0.9037 | 0.8702 | 0.9717 |
0.0105 | 6.0 | 5874 | 0.1423 | 0.8443 | 0.9211 | 0.8810 | 0.9738 |
0.0036 | 7.0 | 6853 | 0.1671 | 0.7994 | 0.9168 | 0.8541 | 0.9696 |
0.0055 | 8.0 | 7832 | 0.1884 | 0.7808 | 0.9161 | 0.8431 | 0.9672 |
0.0023 | 9.0 | 8811 | 0.1772 | 0.8182 | 0.9148 | 0.8638 | 0.9718 |
0.0019 | 10.0 | 9790 | 0.1788 | 0.8180 | 0.9181 | 0.8651 | 0.9718 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 64
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Palu1006/ner-bert-lenerbr-large-v1
Base model
neuralmind/bert-large-portuguese-casedDataset used to train Palu1006/ner-bert-lenerbr-large-v1
Space using Palu1006/ner-bert-lenerbr-large-v1 1
Evaluation results
- Precision on lener_brvalidation set self-reported0.866
- Recall on lener_brvalidation set self-reported0.903
- F1 on lener_brvalidation set self-reported0.884
- Accuracy on lener_brvalidation set self-reported0.975