ner-bert-lenerbr-large-v1

This model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1337
  • Precision: 0.8659
  • Recall: 0.9028
  • F1: 0.8840
  • Accuracy: 0.9754

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0521 1.0 979 0.1236 0.8260 0.8626 0.8439 0.9676
0.0338 2.0 1958 0.2221 0.6535 0.9185 0.7636 0.9536
0.0201 3.0 2937 0.1381 0.7573 0.9084 0.8260 0.9679
0.0163 4.0 3916 0.1337 0.8659 0.9028 0.8840 0.9754
0.0132 5.0 4895 0.1462 0.8392 0.9037 0.8702 0.9717
0.0105 6.0 5874 0.1423 0.8443 0.9211 0.8810 0.9738
0.0036 7.0 6853 0.1671 0.7994 0.9168 0.8541 0.9696
0.0055 8.0 7832 0.1884 0.7808 0.9161 0.8431 0.9672
0.0023 9.0 8811 0.1772 0.8182 0.9148 0.8638 0.9718
0.0019 10.0 9790 0.1788 0.8180 0.9181 0.8651 0.9718

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
64
Safetensors
Model size
333M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Palu1006/ner-bert-lenerbr-large-v1

Finetuned
(42)
this model

Dataset used to train Palu1006/ner-bert-lenerbr-large-v1

Space using Palu1006/ner-bert-lenerbr-large-v1 1

Evaluation results