Commit
·
6b48744
1
Parent(s):
cd0ba53
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +7 -7
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 266.49 +/- 17.32
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39ca772670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39ca772700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39ca772790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39ca772820>", "_build": "<function ActorCriticPolicy._build at 0x7f39ca7728b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f39ca772940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39ca7729d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39ca772a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f39ca772af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39ca772b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39ca772c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39ca772ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f39ca76b8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673858942832569764, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0MwL0HTVI/+7umvjl3Nb+cxS8+W8A1PQAAAAAAAAAAZpTavaTAvz9ObCu/R2AdPrQe3T2tPZU9AAAAAAAAAABdkVy+vOJAP+3ur77sakC/MQuUPYUz3bsAAAAAAAAAAC0io777OBk/vrL8vgOsYr8IOoG9u3jGvAAAAAAAAAAAVtHpPq6IqD4Wld8+Qt+Nv62/qz5m1fU9AAAAAAAAAACAyn+9t7hwP+aWg75pYky/0V5ePv5ZLD4AAAAAAAAAAJPDFT8WfRo/s6I4P0RxTr8MBZg9413+OgAAAAAAAAAAdnVEv+gnmb4Q81S/Q3j6vrPBBb8Fx5e/AACAPwAAAADNVCk+iz0QP4pinz3fOEu/vhRUPhIQD70AAAAAAAAAABBNWb5atJ8/8gEkvxYWAb8QdV49LnsivgAAAAAAAAAASFRMv0i22L2IONc7DTaXPBdv9Dffiag7AACAPwAAgD9W3yc/QQsbP3DXDz+bv1W/sZysPgw8zD0AAAAAAAAAAF0wrD5Zl54+goYiP50/nL+qrM49hUUAPgAAAAAAAAAA2nnFveYsST+czYy+bYqDv6hzdDxKe629AAAAAAAAAACaACS+VPlPP06rZj1ceDK/7IxqvoUM5j0AAAAAAAAAAJpC8Dygp6c/+KtrPqAB3L7WD9i8K3NmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8gpET8okN8CUhpRSlIwBbJRLf4wBdJRHQHHcDyjHn2Z1fZQoaAZoCWgPQwh23zE89glRwJSGlFKUaBVLdWgWR0Bx3Ewg1WKedX2UKGgGaAloD0MIsOWV622/NcCUhpRSlGgVS1ZoFkdAcdzhM8HObHV9lChoBmgJaA9DCL+2fvrPsFnAlIaUUpRoFUtZaBZHQHHdJgkTpPh1fZQoaAZoCWgPQwjRdeEH5y1JwJSGlFKUaBVLa2gWR0Bx3hCCz1K5dX2UKGgGaAloD0MIstR6v9EfU8CUhpRSlGgVS0xoFkdAcd42OQyRCHV9lChoBmgJaA9DCKPKMO4GEUbAlIaUUpRoFUt+aBZHQHHee23KB/Z1fZQoaAZoCWgPQwjjb3uCxAVTwJSGlFKUaBVLXWgWR0Bx3sse4kNXdX2UKGgGaAloD0MICoLHt3dPSsCUhpRSlGgVS3ZoFkdAcd8lTFVDKHV9lChoBmgJaA9DCE7xuKgWPGHAlIaUUpRoFUtvaBZHQHHfPOUt7KJ1fZQoaAZoCWgPQwim0HmNXW5DwJSGlFKUaBVLVGgWR0Bx33I0ZWJadX2UKGgGaAloD0MIOiF00CV3bcCUhpRSlGgVS1xoFkdAceEZ4fOlf3V9lChoBmgJaA9DCAXbiCe7vVXAlIaUUpRoFUtnaBZHQHHhVSflIVd1fZQoaAZoCWgPQwhi9UcYBkBWwJSGlFKUaBVLf2gWR0Bx4YJ+lTFVdX2UKGgGaAloD0MIfv0QGyzcNMCUhpRSlGgVS3RoFkdAceMJ5VwPy3V9lChoBmgJaA9DCM5V8xyRxUrAlIaUUpRoFUufaBZHQHHjMVQAMlV1fZQoaAZoCWgPQwh3EDtT6G5XwJSGlFKUaBVLbmgWR0Bx4+qioKlYdX2UKGgGaAloD0MIBkzg1t2fVcCUhpRSlGgVS1BoFkdAceQiY9gWrXV9lChoBmgJaA9DCBv0pbc/MlLAlIaUUpRoFUtpaBZHQHHkcGorFwV1fZQoaAZoCWgPQwjN5JttbrVUwJSGlFKUaBVLUWgWR0Bx5IywfQrudX2UKGgGaAloD0MIokJ1c/HeUMCUhpRSlGgVS2ZoFkdAceSGkN4JNXV9lChoBmgJaA9DCI0o7Q2+HFXAlIaUUpRoFUt8aBZHQHHlOGCZnct1fZQoaAZoCWgPQwhT7Ggc6slTwJSGlFKUaBVLZ2gWR0Bx5V+iJwbVdX2UKGgGaAloD0MIuw1qv7XZU8CUhpRSlGgVS15oFkdAceXHc1wYL3V9lChoBmgJaA9DCLUy4Zf6fUXAlIaUUpRoFUtMaBZHQHHmsw5/9YR1fZQoaAZoCWgPQwiXdf9YiDNQwJSGlFKUaBVLcWgWR0Bx51F4LThHdX2UKGgGaAloD0MIv+/fvDgxT8CUhpRSlGgVS3NoFkdAcedCemNzbXV9lChoBmgJaA9DCLgjnBa86D/AlIaUUpRoFUuKaBZHQHHn02gnMMZ1fZQoaAZoCWgPQwiIad/cX8xSwJSGlFKUaBVLY2gWR0Bx6ACuEEkjdX2UKGgGaAloD0MImPijqDNLSsCUhpRSlGgVS1BoFkdAceigmZ3LWHV9lChoBmgJaA9DCI6xE16ClUrAlIaUUpRoFUtEaBZHQHHoue4Cp3p1fZQoaAZoCWgPQwhYOEnzxyRMwJSGlFKUaBVLb2gWR0Bx6SHUMG5ddX2UKGgGaAloD0MIqvOo+L82VsCUhpRSlGgVS1toFkdAcek3wCr923V9lChoBmgJaA9DCJNvtrkxClPAlIaUUpRoFUtRaBZHQHHqisny/bl1fZQoaAZoCWgPQwjr/Ntlv4RXwJSGlFKUaBVLaWgWR0Bx66kAPuohdX2UKGgGaAloD0MIo1pEFJM+WcCUhpRSlGgVS19oFkdAcevA2Q4jr3V9lChoBmgJaA9DCHL9uz5zwFnAlIaUUpRoFUt7aBZHQHHs203Ov+x1fZQoaAZoCWgPQwgZINEEit5RwJSGlFKUaBVLVWgWR0Bx7Skadc0MdX2UKGgGaAloD0MIBwySPq3GT8CUhpRSlGgVS4NoFkdAce2AT7EYO3V9lChoBmgJaA9DCDkKEAUzEE/AlIaUUpRoFUtSaBZHQHHtul9Brvd1fZQoaAZoCWgPQwi5quy7IqxowJSGlFKUaBVLkWgWR0Bx7fZOBUaRdX2UKGgGaAloD0MI4bchxmsgSsCUhpRSlGgVS0NoFkdAce3/XXiBG3V9lChoBmgJaA9DCPT4vU1/xFXAlIaUUpRoFUtuaBZHQHHuR/ZuhsZ1fZQoaAZoCWgPQwjbwvNSsTZVwJSGlFKUaBVLhWgWR0Bx7uSzPa+OdX2UKGgGaAloD0MIhLcHISCVVcCUhpRSlGgVS15oFkdAce9OPNmlInV9lChoBmgJaA9DCCfcK/NWPT/AlIaUUpRoFUtFaBZHQHHvfbCaZx91fZQoaAZoCWgPQwifc7frpRdawJSGlFKUaBVLeWgWR0Bx75telbeNdX2UKGgGaAloD0MI/HH75ZMZUcCUhpRSlGgVS2NoFkdAcfAQ1aW5Y3V9lChoBmgJaA9DCK7zb5f9uVrAlIaUUpRoFUuNaBZHQHHxsdtEXtV1fZQoaAZoCWgPQwhtyaoIN9tPwJSGlFKUaBVLT2gWR0Bx8tKQJXyRdX2UKGgGaAloD0MIHEKVmj3qR8CUhpRSlGgVS0xoFkdAcfMvwEyLynV9lChoBmgJaA9DCG5S0Vj7UzvAlIaUUpRoFUtLaBZHQHHzZGnXNC91fZQoaAZoCWgPQwhRvwtbMw9hwJSGlFKUaBVLUmgWR0Bx83Nke6qbdX2UKGgGaAloD0MILSKKyRsgTcCUhpRSlGgVS2xoFkdAcfOR+BpYcXV9lChoBmgJaA9DCBHGT+PeRVDAlIaUUpRoFUt9aBZHQHH0qQJXyRV1fZQoaAZoCWgPQwhnYyXmWdBZwJSGlFKUaBVLXWgWR0Bx9PjWCmMwdX2UKGgGaAloD0MIKAr0iTy7QcCUhpRSlGgVS2toFkdAcfWmYBvJinV9lChoBmgJaA9DCK2JBb6iNFHAlIaUUpRoFUtHaBZHQHH26RMewLV1fZQoaAZoCWgPQwjv/nivWvxXwJSGlFKUaBVLb2gWR0Bx94Q9RrJsdX2UKGgGaAloD0MIVmXfFcE1TsCUhpRSlGgVS5RoFkdAcfe2TPjXF3V9lChoBmgJaA9DCCzWcJF7ckbAlIaUUpRoFUtmaBZHQHH3vpY9xId1fZQoaAZoCWgPQwjPvBx2329WwJSGlFKUaBVLdmgWR0Bx+EI7eVLSdX2UKGgGaAloD0MIG4S53csRQsCUhpRSlGgVS4BoFkdAcfhpOvdM03V9lChoBmgJaA9DCLywNVt5YSTAlIaUUpRoFUuCaBZHQHH5abrkbP11fZQoaAZoCWgPQwgrE36pnwNDwJSGlFKUaBVLYWgWR0Bx+qYLLIPtdX2UKGgGaAloD0MIK8JNRpVvaMCUhpRSlGgVS2RoFkdAcfstSAH3UXV9lChoBmgJaA9DCOY8Y1+yD1LAlIaUUpRoFUttaBZHQHH7UJv5xip1fZQoaAZoCWgPQwjzrQ/rDbJhwJSGlFKUaBVLZ2gWR0Bx+3zRQaaTdX2UKGgGaAloD0MIB3jSwmWzRMCUhpRSlGgVS2doFkdAcfub+tKZlXV9lChoBmgJaA9DCAr4NZIE50nAlIaUUpRoFUtNaBZHQHH+DFuNxVB1fZQoaAZoCWgPQwh2xYzw9mASwJSGlFKUaBVLdmgWR0Bx/nywwCbMdX2UKGgGaAloD0MIQl2kUBbNVMCUhpRSlGgVS05oFkdAcf6yGSIP9XV9lChoBmgJaA9DCCHLgok/bEvAlIaUUpRoFUt8aBZHQHH+p3X7LuB1fZQoaAZoCWgPQwiAtWrXhOBVwJSGlFKUaBVLdmgWR0Bx/zuNPxhEdX2UKGgGaAloD0MIHCjwTj5jTsCUhpRSlGgVS1VoFkdAcf9so2GZeHV9lChoBmgJaA9DCISc9/9xPFjAlIaUUpRoFUtiaBZHQHH/vwmVqvh1fZQoaAZoCWgPQwiCrKdWXzNVwJSGlFKUaBVLdWgWR0ByAHrY5DJEdX2UKGgGaAloD0MIiudsAaFjU8CUhpRSlGgVS3BoFkdAcgCmQKa5PXV9lChoBmgJaA9DCOqScYxkeVLAlIaUUpRoFUtgaBZHQHIBPDYRNAV1fZQoaAZoCWgPQwgXYvVHGMZBwJSGlFKUaBVLUGgWR0ByAd4u9OARdX2UKGgGaAloD0MIp3hcVAuyYsCUhpRSlGgVS2RoFkdAcgP8f3evZHV9lChoBmgJaA9DCAlszsEz4F3AlIaUUpRoFUtuaBZHQHID8La24NJ1fZQoaAZoCWgPQwiGHFvPENxTwJSGlFKUaBVLa2gWR0ByBCbmU4aQdX2UKGgGaAloD0MIodY07zhcXsCUhpRSlGgVS21oFkdAcgSdXT3IuHV9lChoBmgJaA9DCNKm6h7ZWVTAlIaUUpRoFUtRaBZHQHIFgPNFBpp1fZQoaAZoCWgPQwi4HRoWoyxJwJSGlFKUaBVLVmgWR0ByBbYoRZlndX2UKGgGaAloD0MIonxBCwkwL8CUhpRSlGgVS1BoFkdAcgYpEQXhwXV9lChoBmgJaA9DCDs1lxsM5UbAlIaUUpRoFUtPaBZHQHIHZnHvMKV1fZQoaAZoCWgPQwgVrdwLzDhKwJSGlFKUaBVLcGgWR0ByB3vphWo4dX2UKGgGaAloD0MIaQBvgQRHQcCUhpRSlGgVS3hoFkdAcgjGbTc7AHV9lChoBmgJaA9DCPILryR5yVTAlIaUUpRoFUt0aBZHQHIJEn9ehPF1fZQoaAZoCWgPQwibrbzkf85LwJSGlFKUaBVLV2gWR0ByCVpTMqz7dX2UKGgGaAloD0MIt376z5p/BsCUhpRSlGgVS3hoFkdAcgn61b7j1nV9lChoBmgJaA9DCBIvT+cKH2LAlIaUUpRoFUtzaBZHQHIKY8EFGG51fZQoaAZoCWgPQwhLdmwE4idNwJSGlFKUaBVLbGgWR0ByCqXb/Ot5dX2UKGgGaAloD0MI2ZPA5hygUcCUhpRSlGgVS1poFkdAcgyHim2srHV9lChoBmgJaA9DCAw6IXTQtVPAlIaUUpRoFUtRaBZHQHIM6VUuL751fZQoaAZoCWgPQwjtYS8UsJ9FwJSGlFKUaBVLZmgWR0ByDQ/PgNwzdX2UKGgGaAloD0MIC7Q7pBj8UcCUhpRSlGgVS2RoFkdAcg5J3xFy73V9lChoBmgJaA9DCDT0T3Cx7lzAlIaUUpRoFUt5aBZHQHIOisXBP9F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39ca772670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39ca772700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39ca772790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39ca772820>", "_build": "<function ActorCriticPolicy._build at 0x7f39ca7728b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f39ca772940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39ca7729d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39ca772a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f39ca772af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39ca772b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39ca772c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39ca772ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f39ca76b8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673859723792236991, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPo2FD7lwks/kmRVvTmYub5o31I9bQEePQAAAAAAAAAAM4tou8oKuD/XBpO9pIY+PlSQhDtiuIM8AAAAAAAAAAAznuS8e5CIuqYyvrYTS5yxi0EEuxip3DUAAIA/AACAP00zCL3exIY/qs79PG6lob4MAgC9TqdjPQAAAAAAAAAAmlU4vdgW9z4o/sw9VrCGvoX/ETtIp9g5AAAAAAAAAADASEE+E2yEP3VYID/erR+/wlk8PivGqz4AAAAAAAAAAI1MVD64v1U/e5xNPlc1374kILY+s/srvAAAAAAAAAAAgP7IvXM1ZT8GMkw84Am4vgdGrb3SlHO9AAAAAAAAAACA6y89tnAwvFczCT6VX7K9y3Yavc73H78AAIA/AACAP+Yucj0474I/vkTtPCLYvr75KZ09ClSgvQAAAAAAAAAAmgnyuo9SV7rgTAIzFnNoLudmMLstK22zAACAPwAAgD9Nhne+XCw2Px5sjz4ijnu+AIJePOpFtD0AAAAAAAAAAMAm+z316Bk/rIICvj2ubL7rdwK96sv5PAAAAAAAAAAAmql2PKQZTLuud6a7iWIfParrh7xfogA+AACAPwAAgD9Nqdw98rxDP1Z6mr3pGaG+9dQavXpJO70AAAAAAAAAAOaKPz2pGEW8iHGlPPeUJj1jI7a9IgYEPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8tO4N7/7cECUhpRSlIwBbJRL+IwBdJRHQKGr9schkiF1fZQoaAZoCWgPQwi1VN6OMOtyQJSGlFKUaBVNMAFoFkdAoawIs7MgU3V9lChoBmgJaA9DCCJTPgSVP3BAlIaUUpRoFU0oAWgWR0ChrBJOerdWdX2UKGgGaAloD0MIICqNmFlxbkCUhpRSlGgVTSIBaBZHQKGslgrpaA51fZQoaAZoCWgPQwhhi90+q/pvQJSGlFKUaBVNOQFoFkdAoay0YKpkw3V9lChoBmgJaA9DCGTPnstU93FAlIaUUpRoFU0IAWgWR0ChrPdIGyHEdX2UKGgGaAloD0MIAfc8f5q9cECUhpRSlGgVTUEBaBZHQKGtNfixVyZ1fZQoaAZoCWgPQwj5npEIDZZwQJSGlFKUaBVNNgFoFkdAoa1owM6RyXV9lChoBmgJaA9DCDvhJTh1MW5AlIaUUpRoFU0bAWgWR0Chra4Zl4C7dX2UKGgGaAloD0MI3WCow0pncECUhpRSlGgVTQ0BaBZHQKGt2feUILR1fZQoaAZoCWgPQwhSDfs9sTVxQJSGlFKUaBVNHQFoFkdAoa5Q//vOQnV9lChoBmgJaA9DCDfHuU14HXJAlIaUUpRoFUv3aBZHQKGuvCUHIIZ1fZQoaAZoCWgPQwg7NZcbDCNwQJSGlFKUaBVNKAFoFkdAoa+SCxu89XV9lChoBmgJaA9DCBN+qZ+3OW5AlIaUUpRoFU0TAWgWR0ChsDfPPcBVdX2UKGgGaAloD0MIIPEr1jAEcUCUhpRSlGgVTSUBaBZHQKGwOCrcTJ11fZQoaAZoCWgPQwjwv5Xs2AtvQJSGlFKUaBVNOgFoFkdAobB1rIo3JnV9lChoBmgJaA9DCCvCTUaVlUVAlIaUUpRoFUvTaBZHQKGwe4Pwuul1fZQoaAZoCWgPQwikiuJVVspuQJSGlFKUaBVNHwFoFkdAobC7gqEvkHV9lChoBmgJaA9DCN3vUBTo63JAlIaUUpRoFU0qAWgWR0ChsQXL3bmEdX2UKGgGaAloD0MIKgKc3kVPcECUhpRSlGgVTQ8BaBZHQKGxGn752yN1fZQoaAZoCWgPQwg8Mlabf6dvQJSGlFKUaBVNCQFoFkdAobEfHktEonV9lChoBmgJaA9DCCDT2jQ2qm5AlIaUUpRoFU06AWgWR0ChsTt5UtI1dX2UKGgGaAloD0MIe00PCorRckCUhpRSlGgVS+NoFkdAobF47ihnJ3V9lChoBmgJaA9DCLXeb7TjbFRAlIaUUpRoFU0IAWgWR0ChsYzm4iHJdX2UKGgGaAloD0MIAdvBiD0gc0CUhpRSlGgVTQYBaBZHQKGyFeFcpsp1fZQoaAZoCWgPQwhMbD6uDWVuQJSGlFKUaBVNJwFoFkdAobIixZ+x4nV9lChoBmgJaA9DCPTDCOFRGG9AlIaUUpRoFU0HAWgWR0ChspCYTj//dX2UKGgGaAloD0MIT64pkNkhR0CUhpRSlGgVS8VoFkdAobMpc1O0s3V9lChoBmgJaA9DCGYRiq3g53FAlIaUUpRoFUvvaBZHQKGzT6hxo7F1fZQoaAZoCWgPQwiJ6xhXXAJIQJSGlFKUaBVLyWgWR0Chs3CkGiYcdX2UKGgGaAloD0MIdv9YiE4pckCUhpRSlGgVTTEBaBZHQKGzmk8ifQN1fZQoaAZoCWgPQwhkrgyqTRhwQJSGlFKUaBVNCwFoFkdAobRHcJtzjnV9lChoBmgJaA9DCJiKjXkd/UpAlIaUUpRoFUvXaBZHQKG0a4Bmwq11fZQoaAZoCWgPQwgEHEKVmjlyQJSGlFKUaBVNAgFoFkdAobSdRHf/FXV9lChoBmgJaA9DCPOv5ZXrlHJAlIaUUpRoFU0eAWgWR0ChtM+nqFAWdX2UKGgGaAloD0MIByY3iuyNcECUhpRSlGgVTRYBaBZHQKG1WL2pQ1t1fZQoaAZoCWgPQwjooEs4dC9wQJSGlFKUaBVNIAFoFkdAobVr8BMi8nV9lChoBmgJaA9DCAxYchULo3BAlIaUUpRoFU0zAWgWR0ChtdT+3pfQdX2UKGgGaAloD0MI/OJSlfZJcECUhpRSlGgVTR4BaBZHQKG174nndO91fZQoaAZoCWgPQwhXem021vtwQJSGlFKUaBVNBAFoFkdAobZTgIhQnHV9lChoBmgJaA9DCEPjiSAOMnFAlIaUUpRoFU0PAWgWR0ChwQDUExIrdX2UKGgGaAloD0MInSy13u+tckCUhpRSlGgVTTwBaBZHQKHBNsGgSOB1fZQoaAZoCWgPQwjSN2ka1GBxQJSGlFKUaBVNbwFoFkdAocFoJ7b+LnV9lChoBmgJaA9DCEg2V83z1HJAlIaUUpRoFUv9aBZHQKHBaLronrp1fZQoaAZoCWgPQwhXXYdqiiRyQJSGlFKUaBVNDwFoFkdAocH+y9mHxnV9lChoBmgJaA9DCKIo0Ccy+XJAlIaUUpRoFUvTaBZHQKHCYiW3Sa51fZQoaAZoCWgPQwhslzYcFpxvQJSGlFKUaBVNHgFoFkdAocJoSFoL5XV9lChoBmgJaA9DCJKumXwzknJAlIaUUpRoFUv1aBZHQKHCib9ZRsN1fZQoaAZoCWgPQwhuhbAaixRzQJSGlFKUaBVNWwFoFkdAocMXnp0OmXV9lChoBmgJaA9DCBpPBHGeAHNAlIaUUpRoFU0wAWgWR0Chw19hy8zzdX2UKGgGaAloD0MIrvTabKwrbkCUhpRSlGgVTTUBaBZHQKHDygAZKnN1fZQoaAZoCWgPQwg+IxEagb5xQJSGlFKUaBVNLQFoFkdAocRZ2yLQ5XV9lChoBmgJaA9DCPvlkxXDr3JAlIaUUpRoFU0sAWgWR0ChxGYmb9ZSdX2UKGgGaAloD0MIayxhbYzobkCUhpRSlGgVTRIBaBZHQKHEcXwb2lF1fZQoaAZoCWgPQwiIghlTcP1wQJSGlFKUaBVNPQFoFkdAocUA1k1/D3V9lChoBmgJaA9DCOm68IMzpnFAlIaUUpRoFU0zAWgWR0ChxU20zCUHdX2UKGgGaAloD0MI1CtlGeLmbkCUhpRSlGgVTScBaBZHQKHFybQ1JlJ1fZQoaAZoCWgPQwgWF0flpqpuQJSGlFKUaBVNEQFoFkdAocXPvH93r3V9lChoBmgJaA9DCJzFi4VhLXFAlIaUUpRoFU0jAWgWR0ChxewHiWE9dX2UKGgGaAloD0MINC4cCAmCcUCUhpRSlGgVTS8BaBZHQKHGSKD01651fZQoaAZoCWgPQwiTAgtgyttuQJSGlFKUaBVNFQFoFkdAocZwdhiLEXV9lChoBmgJaA9DCA4viEhNtzBAlIaUUpRoFUviaBZHQKHGtBrN4aB1fZQoaAZoCWgPQwj7JHfYhEtyQJSGlFKUaBVNFwFoFkdAocb/j81n/XV9lChoBmgJaA9DCO7p6o4FnnBAlIaUUpRoFU0sAWgWR0Chxy/fwZwXdX2UKGgGaAloD0MIbOnRVM/ub0CUhpRSlGgVTU0BaBZHQKHHq6xxDLN1fZQoaAZoCWgPQwheTDPdq8hyQJSGlFKUaBVL92gWR0Chx6uTibUgdX2UKGgGaAloD0MIw7mGGRp+cUCUhpRSlGgVTQMBaBZHQKHIYqNp/PR1fZQoaAZoCWgPQwiPGaiMv3JwQJSGlFKUaBVNQAFoFkdAochoXQ+lj3V9lChoBmgJaA9DCJSGGoXkLHJAlIaUUpRoFU0fAWgWR0ChyOX+uNgjdX2UKGgGaAloD0MIvYv34/ZBVkCUhpRSlGgVS6xoFkdAocjqtDD0lXV9lChoBmgJaA9DCOC593DJ43BAlIaUUpRoFU0PAWgWR0ChyTmNaQmvdX2UKGgGaAloD0MIwono11bLb0CUhpRSlGgVTUYBaBZHQKHJb82Jiy91fZQoaAZoCWgPQwjNA1jkl91yQJSGlFKUaBVNCgFoFkdAoclu+oLofXV9lChoBmgJaA9DCEoNbQD2XXFAlIaUUpRoFU0QAWgWR0ChyfaTW5H3dX2UKGgGaAloD0MIbamDvN6Kc0CUhpRSlGgVTRUBaBZHQKHKBHSWqtJ1fZQoaAZoCWgPQwijO4idKRRwQJSGlFKUaBVNJAFoFkdAocpapFTef3V9lChoBmgJaA9DCIwsmWP5dXJAlIaUUpRoFUvyaBZHQKHKWyVObiJ1fZQoaAZoCWgPQwgYesToeSJxQJSGlFKUaBVNFwFoFkdAoctmaa1CxHV9lChoBmgJaA9DCHMtWoC2mHBAlIaUUpRoFU03AWgWR0Chy8ZBsyi3dX2UKGgGaAloD0MIbr4R3bMdckCUhpRSlGgVTWABaBZHQKHL3q1PWQR1fZQoaAZoCWgPQwjvVMA9j15wQJSGlFKUaBVNEwFoFkdAocvsGFBY3nV9lChoBmgJaA9DCH9Ma9NYtXFAlIaUUpRoFU0eAWgWR0ChzBn7YTTOdX2UKGgGaAloD0MIJT0Mrc6zbkCUhpRSlGgVTRYBaBZHQKHMx8k2P1d1fZQoaAZoCWgPQwhl/WZiehxwQJSGlFKUaBVNGwFoFkdAoczYDifg8HV9lChoBmgJaA9DCNGwGHUtOnFAlIaUUpRoFU0HAWgWR0ChzRP3SKFadX2UKGgGaAloD0MISIld21skbkCUhpRSlGgVTQkBaBZHQKHNF7hNucd1fZQoaAZoCWgPQwi1pnnHqZNwQJSGlFKUaBVNEAFoFkdAoc3Mg6ltTHV9lChoBmgJaA9DCLzplh0iMHFAlIaUUpRoFU0jAWgWR0ChzeVJ+UhWdX2UKGgGaAloD0MIFAX6RB4ObECUhpRSlGgVTRcBaBZHQKHN7pu/Dcd1fZQoaAZoCWgPQwjU78LWLJVwQJSGlFKUaBVNPAFoFkdAoc8fe7+T/3V9lChoBmgJaA9DCJw0DYomEnFAlIaUUpRoFU0hAWgWR0Chzx+bmU4adX2UKGgGaAloD0MIKJmc2pnmbUCUhpRSlGgVTS0BaBZHQKHPUdELH+91fZQoaAZoCWgPQwhcPLzngBRxQJSGlFKUaBVNXQFoFkdAoc++ReTmn3V9lChoBmgJaA9DCK7wLhdxfHBAlIaUUpRoFU0UAWgWR0Ch0AtK7I1cdX2UKGgGaAloD0MIWDhJ80eLbUCUhpRSlGgVTRIBaBZHQKHQV+NtIkJ1fZQoaAZoCWgPQwj8q8d9a0ZxQJSGlFKUaBVNFQFoFkdAodB4JPZZjnV9lChoBmgJaA9DCDo7GRylSXBAlIaUUpRoFU0VAWgWR0Ch0ILw4KhMdX2UKGgGaAloD0MIvtu8cVKAQUCUhpRSlGgVS9ZoFkdAodCfHmzSkXV9lChoBmgJaA9DCA38qIZ9pXFAlIaUUpRoFU0nAWgWR0Ch0O4yGi5/dX2UKGgGaAloD0MIZapgVBLAcUCUhpRSlGgVTRUBaBZHQKHRQeOn2qV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08eb8daf12a7d6a9c1ce167caadfa1f0cb216e4a2aa0045fa433f557a8a84ad1
|
3 |
+
size 147404
|
ppo-LunarLander-v2/data
CHANGED
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1673859723792236991,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPo2FD7lwks/kmRVvTmYub5o31I9bQEePQAAAAAAAAAAM4tou8oKuD/XBpO9pIY+PlSQhDtiuIM8AAAAAAAAAAAznuS8e5CIuqYyvrYTS5yxi0EEuxip3DUAAIA/AACAP00zCL3exIY/qs79PG6lob4MAgC9TqdjPQAAAAAAAAAAmlU4vdgW9z4o/sw9VrCGvoX/ETtIp9g5AAAAAAAAAADASEE+E2yEP3VYID/erR+/wlk8PivGqz4AAAAAAAAAAI1MVD64v1U/e5xNPlc1374kILY+s/srvAAAAAAAAAAAgP7IvXM1ZT8GMkw84Am4vgdGrb3SlHO9AAAAAAAAAACA6y89tnAwvFczCT6VX7K9y3Yavc73H78AAIA/AACAP+Yucj0474I/vkTtPCLYvr75KZ09ClSgvQAAAAAAAAAAmgnyuo9SV7rgTAIzFnNoLudmMLstK22zAACAPwAAgD9Nhne+XCw2Px5sjz4ijnu+AIJePOpFtD0AAAAAAAAAAMAm+z316Bk/rIICvj2ubL7rdwK96sv5PAAAAAAAAAAAmql2PKQZTLuud6a7iWIfParrh7xfogA+AACAPwAAgD9Nqdw98rxDP1Z6mr3pGaG+9dQavXpJO70AAAAAAAAAAOaKPz2pGEW8iHGlPPeUJj1jI7a9IgYEPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8tO4N7/7cECUhpRSlIwBbJRL+IwBdJRHQKGr9schkiF1fZQoaAZoCWgPQwi1VN6OMOtyQJSGlFKUaBVNMAFoFkdAoawIs7MgU3V9lChoBmgJaA9DCCJTPgSVP3BAlIaUUpRoFU0oAWgWR0ChrBJOerdWdX2UKGgGaAloD0MIICqNmFlxbkCUhpRSlGgVTSIBaBZHQKGslgrpaA51fZQoaAZoCWgPQwhhi90+q/pvQJSGlFKUaBVNOQFoFkdAoay0YKpkw3V9lChoBmgJaA9DCGTPnstU93FAlIaUUpRoFU0IAWgWR0ChrPdIGyHEdX2UKGgGaAloD0MIAfc8f5q9cECUhpRSlGgVTUEBaBZHQKGtNfixVyZ1fZQoaAZoCWgPQwj5npEIDZZwQJSGlFKUaBVNNgFoFkdAoa1owM6RyXV9lChoBmgJaA9DCDvhJTh1MW5AlIaUUpRoFU0bAWgWR0Chra4Zl4C7dX2UKGgGaAloD0MI3WCow0pncECUhpRSlGgVTQ0BaBZHQKGt2feUILR1fZQoaAZoCWgPQwhSDfs9sTVxQJSGlFKUaBVNHQFoFkdAoa5Q//vOQnV9lChoBmgJaA9DCDfHuU14HXJAlIaUUpRoFUv3aBZHQKGuvCUHIIZ1fZQoaAZoCWgPQwg7NZcbDCNwQJSGlFKUaBVNKAFoFkdAoa+SCxu89XV9lChoBmgJaA9DCBN+qZ+3OW5AlIaUUpRoFU0TAWgWR0ChsDfPPcBVdX2UKGgGaAloD0MIIPEr1jAEcUCUhpRSlGgVTSUBaBZHQKGwOCrcTJ11fZQoaAZoCWgPQwjwv5Xs2AtvQJSGlFKUaBVNOgFoFkdAobB1rIo3JnV9lChoBmgJaA9DCCvCTUaVlUVAlIaUUpRoFUvTaBZHQKGwe4Pwuul1fZQoaAZoCWgPQwikiuJVVspuQJSGlFKUaBVNHwFoFkdAobC7gqEvkHV9lChoBmgJaA9DCN3vUBTo63JAlIaUUpRoFU0qAWgWR0ChsQXL3bmEdX2UKGgGaAloD0MIKgKc3kVPcECUhpRSlGgVTQ8BaBZHQKGxGn752yN1fZQoaAZoCWgPQwg8Mlabf6dvQJSGlFKUaBVNCQFoFkdAobEfHktEonV9lChoBmgJaA9DCCDT2jQ2qm5AlIaUUpRoFU06AWgWR0ChsTt5UtI1dX2UKGgGaAloD0MIe00PCorRckCUhpRSlGgVS+NoFkdAobF47ihnJ3V9lChoBmgJaA9DCLXeb7TjbFRAlIaUUpRoFU0IAWgWR0ChsYzm4iHJdX2UKGgGaAloD0MIAdvBiD0gc0CUhpRSlGgVTQYBaBZHQKGyFeFcpsp1fZQoaAZoCWgPQwhMbD6uDWVuQJSGlFKUaBVNJwFoFkdAobIixZ+x4nV9lChoBmgJaA9DCPTDCOFRGG9AlIaUUpRoFU0HAWgWR0ChspCYTj//dX2UKGgGaAloD0MIT64pkNkhR0CUhpRSlGgVS8VoFkdAobMpc1O0s3V9lChoBmgJaA9DCGYRiq3g53FAlIaUUpRoFUvvaBZHQKGzT6hxo7F1fZQoaAZoCWgPQwiJ6xhXXAJIQJSGlFKUaBVLyWgWR0Chs3CkGiYcdX2UKGgGaAloD0MIdv9YiE4pckCUhpRSlGgVTTEBaBZHQKGzmk8ifQN1fZQoaAZoCWgPQwhkrgyqTRhwQJSGlFKUaBVNCwFoFkdAobRHcJtzjnV9lChoBmgJaA9DCJiKjXkd/UpAlIaUUpRoFUvXaBZHQKG0a4Bmwq11fZQoaAZoCWgPQwgEHEKVmjlyQJSGlFKUaBVNAgFoFkdAobSdRHf/FXV9lChoBmgJaA9DCPOv5ZXrlHJAlIaUUpRoFU0eAWgWR0ChtM+nqFAWdX2UKGgGaAloD0MIByY3iuyNcECUhpRSlGgVTRYBaBZHQKG1WL2pQ1t1fZQoaAZoCWgPQwjooEs4dC9wQJSGlFKUaBVNIAFoFkdAobVr8BMi8nV9lChoBmgJaA9DCAxYchULo3BAlIaUUpRoFU0zAWgWR0ChtdT+3pfQdX2UKGgGaAloD0MI/OJSlfZJcECUhpRSlGgVTR4BaBZHQKG174nndO91fZQoaAZoCWgPQwhXem021vtwQJSGlFKUaBVNBAFoFkdAobZTgIhQnHV9lChoBmgJaA9DCEPjiSAOMnFAlIaUUpRoFU0PAWgWR0ChwQDUExIrdX2UKGgGaAloD0MInSy13u+tckCUhpRSlGgVTTwBaBZHQKHBNsGgSOB1fZQoaAZoCWgPQwjSN2ka1GBxQJSGlFKUaBVNbwFoFkdAocFoJ7b+LnV9lChoBmgJaA9DCEg2V83z1HJAlIaUUpRoFUv9aBZHQKHBaLronrp1fZQoaAZoCWgPQwhXXYdqiiRyQJSGlFKUaBVNDwFoFkdAocH+y9mHxnV9lChoBmgJaA9DCKIo0Ccy+XJAlIaUUpRoFUvTaBZHQKHCYiW3Sa51fZQoaAZoCWgPQwhslzYcFpxvQJSGlFKUaBVNHgFoFkdAocJoSFoL5XV9lChoBmgJaA9DCJKumXwzknJAlIaUUpRoFUv1aBZHQKHCib9ZRsN1fZQoaAZoCWgPQwhuhbAaixRzQJSGlFKUaBVNWwFoFkdAocMXnp0OmXV9lChoBmgJaA9DCBpPBHGeAHNAlIaUUpRoFU0wAWgWR0Chw19hy8zzdX2UKGgGaAloD0MIrvTabKwrbkCUhpRSlGgVTTUBaBZHQKHDygAZKnN1fZQoaAZoCWgPQwg+IxEagb5xQJSGlFKUaBVNLQFoFkdAocRZ2yLQ5XV9lChoBmgJaA9DCPvlkxXDr3JAlIaUUpRoFU0sAWgWR0ChxGYmb9ZSdX2UKGgGaAloD0MIayxhbYzobkCUhpRSlGgVTRIBaBZHQKHEcXwb2lF1fZQoaAZoCWgPQwiIghlTcP1wQJSGlFKUaBVNPQFoFkdAocUA1k1/D3V9lChoBmgJaA9DCOm68IMzpnFAlIaUUpRoFU0zAWgWR0ChxU20zCUHdX2UKGgGaAloD0MI1CtlGeLmbkCUhpRSlGgVTScBaBZHQKHFybQ1JlJ1fZQoaAZoCWgPQwgWF0flpqpuQJSGlFKUaBVNEQFoFkdAocXPvH93r3V9lChoBmgJaA9DCJzFi4VhLXFAlIaUUpRoFU0jAWgWR0ChxewHiWE9dX2UKGgGaAloD0MINC4cCAmCcUCUhpRSlGgVTS8BaBZHQKHGSKD01651fZQoaAZoCWgPQwiTAgtgyttuQJSGlFKUaBVNFQFoFkdAocZwdhiLEXV9lChoBmgJaA9DCA4viEhNtzBAlIaUUpRoFUviaBZHQKHGtBrN4aB1fZQoaAZoCWgPQwj7JHfYhEtyQJSGlFKUaBVNFwFoFkdAocb/j81n/XV9lChoBmgJaA9DCO7p6o4FnnBAlIaUUpRoFU0sAWgWR0Chxy/fwZwXdX2UKGgGaAloD0MIbOnRVM/ub0CUhpRSlGgVTU0BaBZHQKHHq6xxDLN1fZQoaAZoCWgPQwheTDPdq8hyQJSGlFKUaBVL92gWR0Chx6uTibUgdX2UKGgGaAloD0MIw7mGGRp+cUCUhpRSlGgVTQMBaBZHQKHIYqNp/PR1fZQoaAZoCWgPQwiPGaiMv3JwQJSGlFKUaBVNQAFoFkdAochoXQ+lj3V9lChoBmgJaA9DCJSGGoXkLHJAlIaUUpRoFU0fAWgWR0ChyOX+uNgjdX2UKGgGaAloD0MIvYv34/ZBVkCUhpRSlGgVS6xoFkdAocjqtDD0lXV9lChoBmgJaA9DCOC593DJ43BAlIaUUpRoFU0PAWgWR0ChyTmNaQmvdX2UKGgGaAloD0MIwono11bLb0CUhpRSlGgVTUYBaBZHQKHJb82Jiy91fZQoaAZoCWgPQwjNA1jkl91yQJSGlFKUaBVNCgFoFkdAoclu+oLofXV9lChoBmgJaA9DCEoNbQD2XXFAlIaUUpRoFU0QAWgWR0ChyfaTW5H3dX2UKGgGaAloD0MIbamDvN6Kc0CUhpRSlGgVTRUBaBZHQKHKBHSWqtJ1fZQoaAZoCWgPQwijO4idKRRwQJSGlFKUaBVNJAFoFkdAocpapFTef3V9lChoBmgJaA9DCIwsmWP5dXJAlIaUUpRoFUvyaBZHQKHKWyVObiJ1fZQoaAZoCWgPQwgYesToeSJxQJSGlFKUaBVNFwFoFkdAoctmaa1CxHV9lChoBmgJaA9DCHMtWoC2mHBAlIaUUpRoFU03AWgWR0Chy8ZBsyi3dX2UKGgGaAloD0MIbr4R3bMdckCUhpRSlGgVTWABaBZHQKHL3q1PWQR1fZQoaAZoCWgPQwjvVMA9j15wQJSGlFKUaBVNEwFoFkdAocvsGFBY3nV9lChoBmgJaA9DCH9Ma9NYtXFAlIaUUpRoFU0eAWgWR0ChzBn7YTTOdX2UKGgGaAloD0MIJT0Mrc6zbkCUhpRSlGgVTRYBaBZHQKHMx8k2P1d1fZQoaAZoCWgPQwhl/WZiehxwQJSGlFKUaBVNGwFoFkdAoczYDifg8HV9lChoBmgJaA9DCNGwGHUtOnFAlIaUUpRoFU0HAWgWR0ChzRP3SKFadX2UKGgGaAloD0MISIld21skbkCUhpRSlGgVTQkBaBZHQKHNF7hNucd1fZQoaAZoCWgPQwi1pnnHqZNwQJSGlFKUaBVNEAFoFkdAoc3Mg6ltTHV9lChoBmgJaA9DCLzplh0iMHFAlIaUUpRoFU0jAWgWR0ChzeVJ+UhWdX2UKGgGaAloD0MIFAX6RB4ObECUhpRSlGgVTRcBaBZHQKHN7pu/Dcd1fZQoaAZoCWgPQwjU78LWLJVwQJSGlFKUaBVNPAFoFkdAoc8fe7+T/3V9lChoBmgJaA9DCJw0DYomEnFAlIaUUpRoFU0hAWgWR0Chzx+bmU4adX2UKGgGaAloD0MIKJmc2pnmbUCUhpRSlGgVTS0BaBZHQKHPUdELH+91fZQoaAZoCWgPQwhcPLzngBRxQJSGlFKUaBVNXQFoFkdAoc++ReTmn3V9lChoBmgJaA9DCK7wLhdxfHBAlIaUUpRoFU0UAWgWR0Ch0AtK7I1cdX2UKGgGaAloD0MIWDhJ80eLbUCUhpRSlGgVTRIBaBZHQKHQV+NtIkJ1fZQoaAZoCWgPQwj8q8d9a0ZxQJSGlFKUaBVNFQFoFkdAodB4JPZZjnV9lChoBmgJaA9DCDo7GRylSXBAlIaUUpRoFU0VAWgWR0Ch0ILw4KhMdX2UKGgGaAloD0MIvtu8cVKAQUCUhpRSlGgVS9ZoFkdAodCfHmzSkXV9lChoBmgJaA9DCA38qIZ9pXFAlIaUUpRoFU0nAWgWR0Ch0O4yGi5/dX2UKGgGaAloD0MIZapgVBLAcUCUhpRSlGgVTRUBaBZHQKHRQeOn2qV1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 276,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff662beb2cd8d27bbd3fa9cdafbf5875dd91d5d1bc94ad56926bde541fe17d1d
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27f585c77bb784eff9c97c4af251473c742f76d3eee6efc036391c212e9a730d
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 266.4944712548533, "std_reward": 17.321545629020285, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T09:25:04.865613"}
|