Built with Axolotl

See axolotl config

axolotl version: 0.5.2

adapter: qlora
auto_find_batch_size: true
base_model: unsloth/gemma-1.1-2b-it
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - daf8ae2767585eee_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/daf8ae2767585eee_train_data.json
  type:
    field_instruction: instruction
    field_output: chosen_response
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: false
fsdp:
- full_shard
- auto_wrap
fsdp_config:
  fsdp_cpu_ram_efficient_loading: true
  fsdp_limit_all_gathers: true
  fsdp_offload_params: true
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sync_module_states: true
  fsdp_use_orig_params: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: PhoenixB/2d637c5c-f58b-48dd-aef0-d8e42e38b58d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/daf8ae2767585eee_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 8192
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1115750a-3391-4fb1-b79b-da6ec1151eb0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1115750a-3391-4fb1-b79b-da6ec1151eb0
warmup_steps: 5
weight_decay: 0.0

2d637c5c-f58b-48dd-aef0-d8e42e38b58d

This model is a fine-tuned version of unsloth/gemma-1.1-2b-it on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0011 1 3.5912
1.7189 0.0108 10 1.1344
0.5098 0.0216 20 0.5566
0.8596 0.0324 30 0.4883

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for PhoenixB/2d637c5c-f58b-48dd-aef0-d8e42e38b58d

Adapter
(245)
this model