See axolotl config
axolotl version: 0.5.2
adapter: qlora
auto_find_batch_size: true
base_model: unsloth/gemma-1.1-2b-it
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- daf8ae2767585eee_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/daf8ae2767585eee_train_data.json
type:
field_instruction: instruction
field_output: chosen_response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: false
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_cpu_ram_efficient_loading: true
fsdp_limit_all_gathers: true
fsdp_offload_params: true
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: PhoenixB/2d637c5c-f58b-48dd-aef0-d8e42e38b58d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/daf8ae2767585eee_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 8192
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1115750a-3391-4fb1-b79b-da6ec1151eb0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1115750a-3391-4fb1-b79b-da6ec1151eb0
warmup_steps: 5
weight_decay: 0.0
2d637c5c-f58b-48dd-aef0-d8e42e38b58d
This model is a fine-tuned version of unsloth/gemma-1.1-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4883
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0011 | 1 | 3.5912 |
1.7189 | 0.0108 | 10 | 1.1344 |
0.5098 | 0.0216 | 20 | 0.5566 |
0.8596 | 0.0324 | 30 | 0.4883 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PhoenixB/2d637c5c-f58b-48dd-aef0-d8e42e38b58d
Base model
unsloth/gemma-1.1-2b-it