File size: 1,614 Bytes
a5591ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
library_name: peft
pipeline_tag: text-generation
language: en
tags:
- deepseek
- text-generation
- conversational
---
# Microsoft 365 Data Management Expert
This model is fine-tuned from deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B for answering questions about Microsoft 365 data management,
specifically focusing on SharePoint, OneDrive, and Teams. It provides detailed responses about:
- Data governance
- Retention policies
- Permissions management
- Version control
- Sensitivity labels
- Document lifecycle
- Compliance features
- And more
## Model Details
- **Base Model**: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
- **Training**: Fine-tuned using LoRA
- **Task**: Question-answering about Microsoft 365 data management
- **Language**: English
- **License**: Same as base model
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("YOUR_USERNAME/microsoft365_expert")
tokenizer = AutoTokenizer.from_pretrained("YOUR_USERNAME/microsoft365_expert")
# Example usage
question = "What is data governance in Microsoft 365?"
inputs = tokenizer(question, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=2048)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Limitations
- Responses are based on training data and may not reflect the latest Microsoft 365 updates
- Should be used as a reference, not as the sole source for compliance decisions
- May require fact-checking against official Microsoft documentation
|