File size: 7,147 Bytes
5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 3f70d51 5f2bc77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
---
library_name: transformers
license: cc
datasets:
- kinokokoro/ichikara-instruction-003
language:
- ja
metrics:
- accuracy
base_model:
- llm-jp/llm-jp-3-3.7b
- llm-jp/llm-jp-3-13b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
Final competition report for weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/
Using finetuning and some other methods to have better result for elyza-tasks-100-TV_0
With the optimization Technolkogy of Quantamize, PEFT.
### Model Description
https://drive.google.com/drive/folders/1TcEpKngy72fbxXcu4VxoVUbPfvg8Z1z0
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:Yohei.KObayashi with modification by Hiroshi Hayashi
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type: llm-jp/llm-jp
- **Language(s) (NLP): Japanese
- **License: CC-BY-NC-SA
- **Finetuned from model [optional]:Quantamize, PEFT
### Model Sources [optional]
llm-jp-3 1.8B, 3.7B, 13B
- **Repository:-- [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
Learn and get experience to use fine tuning technology and learn how to inplement such fine tuning technologies
### Direct Use
No intension to be used with such case
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
This code is only for students and trainee fo AI implementation.
Not fully tested for the actual project use case
## Bias, Risks, and Limitations
This program and updated file is generated by the code by Yohei Kobayashi for training coase by Matsuo-lab @ Tokyo university.
https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/
Please contact Matsuo-Lab if you plan to use this code and any files related to this project.
### Recommendations
Any students who tries using LLM, this is very useful to understand and get started fromthe perspective of academic perpose
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
HF_TOKEN = "Hugging Face Token"
model_id = "" # < Model folder path
adapter_id = "" # Hugging Face ID
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### Direction
{input}
### Answers
"""
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**input_ids, max_new_tokens=512, do_sample=False, repetition_penalty=1.2,)
output = tokenizer.decode(outputs[0][input_ids.input_ids.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
import re
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
## Training Details
Used "Ichikara Instruction"
ichikara-instruction-003-001-1.json
### Training Data
https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/
### Training Procedure
PEFT
LoRA rank : 16
Scaling factor : lora_alpha 32
Dropout ratio : 0.05
No Bias
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
#### Speeds, Sizes, Times [optional]
36:53
864/864
Epoch 0/1
## Evaluation
elyza-tasks-100-TV_0.jsonl
### Testing Data, Factors & Metrics
elyza-tasks-100 with latest TV and TV show related information
#### Testing Data
[More Information Needed]
#### Factors
[More Information Needed]
#### Metrics
accuracy with limiteation of model execution time
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
[More Information Needed]
## Environmental Impact
CPU memory : 48GB
GPU: L4 (24G)
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
Python 3.10.6
## Citation [optional]
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |