Transformers
Safetensors
Japanese
File size: 7,147 Bytes
5f2bc77
 
3f70d51
 
 
 
 
 
 
 
 
 
5f2bc77
 
 
 
 
 
 
 
 
 
3f70d51
 
 
 
5f2bc77
 
3f70d51
5f2bc77
 
 
3f70d51
5f2bc77
 
3f70d51
 
 
 
5f2bc77
 
 
3f70d51
 
5f2bc77
3f70d51
5f2bc77
 
 
 
 
3f70d51
5f2bc77
 
 
3f70d51
5f2bc77
 
 
 
 
 
 
 
 
 
3f70d51
 
5f2bc77
 
 
 
3f70d51
 
 
5f2bc77
 
 
 
3f70d51
5f2bc77
 
 
 
 
 
 
3f70d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2bc77
 
3f70d51
 
 
 
5f2bc77
 
3f70d51
5f2bc77
 
 
 
3f70d51
 
 
 
 
 
5f2bc77
 
 
 
 
 
 
 
3f70d51
5f2bc77
 
 
3f70d51
 
 
5f2bc77
 
 
 
3f70d51
5f2bc77
 
 
3f70d51
 
5f2bc77
 
 
 
 
 
 
 
 
 
 
 
3f70d51
5f2bc77
 
 
 
 
 
 
 
 
 
 
 
 
3f70d51
5f2bc77
 
 
 
3f70d51
 
5f2bc77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f70d51
5f2bc77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
---
library_name: transformers
license: cc
datasets:
- kinokokoro/ichikara-instruction-003
language:
- ja
metrics:
- accuracy
base_model:
- llm-jp/llm-jp-3-3.7b
- llm-jp/llm-jp-3-13b
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

Final competition report for weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/
Using finetuning and some other methods to have better result for elyza-tasks-100-TV_0
With the optimization Technolkogy of Quantamize, PEFT.

### Model Description

https://drive.google.com/drive/folders/1TcEpKngy72fbxXcu4VxoVUbPfvg8Z1z0

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:Yohei.KObayashi with modification by Hiroshi Hayashi
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type: llm-jp/llm-jp
- **Language(s) (NLP): Japanese
- **License: CC-BY-NC-SA
- **Finetuned from model [optional]:Quantamize, PEFT

### Model Sources [optional]

llm-jp-3 1.8B, 3.7B, 13B


- **Repository:-- [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

Learn and get experience to use fine tuning technology and learn how to inplement such fine tuning technologies

### Direct Use

No intension to be used with such case


### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

This code is only for students and trainee fo AI implementation.
Not fully tested for the actual project use case


## Bias, Risks, and Limitations

This program and updated file is generated by the code by Yohei Kobayashi for training coase by Matsuo-lab @ Tokyo university.
https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/
Please contact Matsuo-Lab if you plan to use this code and any files related to this project.


### Recommendations

Any students who tries using LLM, this is very useful to understand and get started fromthe perspective of academic perpose

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json

HF_TOKEN = "Hugging Face Token"

model_id = ""   # < Model folder path
adapter_id = "" # Hugging Face ID

# QLoRA config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

# Load model
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=bnb_config,
    device_map="auto",
    token = HF_TOKEN
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)

model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""
results = []
for data in tqdm(datasets):

  input = data["input"]
  prompt = f"""### Direction
  {input}
  ### Answers
  """

  input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
  outputs = model.generate(**input_ids, max_new_tokens=512, do_sample=False, repetition_penalty=1.2,)
  output = tokenizer.decode(outputs[0][input_ids.input_ids.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input, "output": output})        

results = []
for data in tqdm(datasets):

  input = data["input"]

  prompt = f"""### 指示
  {input}
  ### 回答
  """

  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)
  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input, "output": output})

import re
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')

  
## Training Details

Used "Ichikara Instruction"
ichikara-instruction-003-001-1.json


### Training Data

https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/


### Training Procedure

PEFT
LoRA rank : 16
Scaling factor : lora_alpha 32
Dropout ratio : 0.05
No Bias


#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters



#### Speeds, Sizes, Times [optional]

36:53
864/864 
Epoch 0/1


## Evaluation

elyza-tasks-100-TV_0.jsonl

### Testing Data, Factors & Metrics

elyza-tasks-100 with latest TV and TV show related information

#### Testing Data


[More Information Needed]

#### Factors


[More Information Needed]

#### Metrics

accuracy with limiteation of model execution time

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]



[More Information Needed]

## Environmental Impact
CPU memory : 48GB
GPU: L4 (24G)


Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

Python 3.10.6

## Citation [optional]


**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]