QuestionAnswerLabel
This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1142
- Train Accuracy: 0.9620
- Validation Loss: 0.2475
- Validation Accuracy: 0.9251
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
2.3198 | 0.4600 | 0.9640 | 0.7095 | 0 |
0.7134 | 0.7711 | 0.4776 | 0.8398 | 1 |
0.3989 | 0.8623 | 0.3416 | 0.8799 | 2 |
0.2743 | 0.9020 | 0.3349 | 0.8782 | 3 |
0.2236 | 0.9180 | 0.2873 | 0.9015 | 4 |
0.1902 | 0.9308 | 0.2535 | 0.9101 | 5 |
0.1593 | 0.9433 | 0.2579 | 0.9210 | 6 |
0.1489 | 0.9492 | 0.2521 | 0.9233 | 7 |
0.1298 | 0.9559 | 0.2742 | 0.9166 | 8 |
0.1142 | 0.9620 | 0.2475 | 0.9251 | 9 |
Framework versions
- Transformers 4.51.3
- TensorFlow 2.18.0
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 25
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PrabalAryal/QuestionAnswerLabel
Base model
google-bert/bert-base-multilingual-cased