QuestionAnswerLabel

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1142
  • Train Accuracy: 0.9620
  • Validation Loss: 0.2475
  • Validation Accuracy: 0.9251
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
2.3198 0.4600 0.9640 0.7095 0
0.7134 0.7711 0.4776 0.8398 1
0.3989 0.8623 0.3416 0.8799 2
0.2743 0.9020 0.3349 0.8782 3
0.2236 0.9180 0.2873 0.9015 4
0.1902 0.9308 0.2535 0.9101 5
0.1593 0.9433 0.2579 0.9210 6
0.1489 0.9492 0.2521 0.9233 7
0.1298 0.9559 0.2742 0.9166 8
0.1142 0.9620 0.2475 0.9251 9

Framework versions

  • Transformers 4.51.3
  • TensorFlow 2.18.0
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
25
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for PrabalAryal/QuestionAnswerLabel

Finetuned
(734)
this model