CrossEncoder based on sentence-transformers/all-mpnet-base-v2
This is a Cross Encoder model finetuned from sentence-transformers/all-mpnet-base-v2 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("Pranjal2002/all-mpnet-base-v2")
# Get scores for pairs of texts
pairs = [
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '10-K'],
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', 'Earnings'],
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', 'DEF14A'],
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '8-K'],
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '10-Q'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?',
[
'10-K',
'Earnings',
'DEF14A',
'8-K',
'10-Q',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,190 training samples
- Columns:
query,docs, andlabels - Approximate statistics based on the first 1000 samples:
query docs labels type string list list details - min: 55 characters
- mean: 103.12 characters
- max: 180 characters
- size: 5 elements
- size: 5 elements
- Samples:
query docs labels What year over year growth rate was shown for paid memberships in the same table['10-Q', '10-K', '8-K', 'Earnings', 'DEF14A'][4, 3, 2, 1, 0]How did non‑GAAP EPS growth align with the incentive metrics set for management?['DEF14A', '8-K', '10-K', '10-Q', 'Earnings'][2, 1, 0, 0, 0]What questions were raised regarding Xcel Energy Inc.’s risk factors and mitigation plans related to the integration of renewable energy sources into their grid?['10-K', 'Earnings', '8-K', '10-Q', 'DEF14A'][4, 3, 2, 1, 0] - Loss:
ListNetLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null }
Evaluation Dataset
Unnamed Dataset
- Size: 798 evaluation samples
- Columns:
query,docs, andlabels - Approximate statistics based on the first 798 samples:
query docs labels type string list list details - min: 53 characters
- mean: 102.91 characters
- max: 179 characters
- size: 5 elements
- size: 5 elements
- Samples:
query docs labels What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?['10-K', 'Earnings', 'DEF14A', '8-K', '10-Q'][4, 3, 2, 1, 0]How does Pentair manage equity award burn rate or share pool availability?['10-K', 'DEF14A', '10-Q', 'Earnings', '8-K'][4, 3, 2, 1, 0]What key takeaways emerged from Valero Energy Corporation’s most recent earnings announcement?['10-Q', '10-K', 'Earnings', '8-K', 'DEF14A'][4, 3, 2, 1, 0] - Loss:
ListNetLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 4per_device_eval_batch_size: 4gradient_accumulation_steps: 2learning_rate: 2e-05num_train_epochs: 5warmup_steps: 100bf16: Trueload_best_model_at_end: Trueoptim: adamw_torch
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 100log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.1253 | 50 | 1.6075 | - |
| 0.2506 | 100 | 1.5205 | - |
| 0.3759 | 150 | 1.4374 | - |
| 0.5013 | 200 | 1.3845 | 1.3822 |
| 0.6266 | 250 | 1.3679 | - |
| 0.7519 | 300 | 1.3746 | - |
| 0.8772 | 350 | 1.4091 | - |
| 1.0025 | 400 | 1.3422 | 1.3904 |
| 1.1278 | 450 | 1.3553 | - |
| 1.2531 | 500 | 1.3408 | - |
| 1.3784 | 550 | 1.3326 | - |
| 1.5038 | 600 | 1.3103 | 1.3707 |
| 1.6291 | 650 | 1.3377 | - |
| 1.7544 | 700 | 1.3545 | - |
| 1.8797 | 750 | 1.3357 | - |
| 2.005 | 800 | 1.3403 | 1.3394 |
| 2.1303 | 850 | 1.3255 | - |
| 2.2556 | 900 | 1.3354 | - |
| 2.3810 | 950 | 1.3086 | - |
| 2.5063 | 1000 | 1.3068 | 1.3520 |
| 2.6316 | 1050 | 1.3193 | - |
| 2.7569 | 1100 | 1.3203 | - |
| 2.8822 | 1150 | 1.317 | - |
| 3.0075 | 1200 | 1.3212 | 1.3575 |
| 3.1328 | 1250 | 1.2905 | - |
| 3.2581 | 1300 | 1.3045 | - |
| 3.3835 | 1350 | 1.2826 | - |
| 3.5088 | 1400 | 1.3314 | 1.3392 |
| 3.6341 | 1450 | 1.3094 | - |
| 3.7594 | 1500 | 1.3134 | - |
| 3.8847 | 1550 | 1.285 | - |
| 4.0100 | 1600 | 1.295 | 1.3563 |
| 4.1353 | 1650 | 1.3003 | - |
| 4.2607 | 1700 | 1.2871 | - |
| 4.3860 | 1750 | 1.2837 | - |
| 4.5113 | 1800 | 1.297 | 1.3536 |
| 4.6366 | 1850 | 1.2735 | - |
| 4.7619 | 1900 | 1.2854 | - |
| 4.8872 | 1950 | 1.295 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ListNetLoss
@inproceedings{cao2007learning,
title={Learning to Rank: From Pairwise Approach to Listwise Approach},
author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
booktitle={Proceedings of the 24th international conference on Machine learning},
pages={129--136},
year={2007}
}
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Pranjal2002/all-mpnet-base-v2
Base model
sentence-transformers/all-mpnet-base-v2