CrossEncoder based on ProsusAI/finbert

This is a Cross Encoder model finetuned from ProsusAI/finbert using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: ProsusAI/finbert
  • Maximum Sequence Length: 512 tokens
  • Number of Output Labels: 1 label

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("Pranjal2002/finbert_new_v2")
# Get scores for pairs of texts
pairs = [
    ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '10-K'],
    ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', 'Earnings'],
    ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', 'DEF14A'],
    ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '8-K'],
    ['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '10-Q'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?',
    [
        '10-K',
        'Earnings',
        'DEF14A',
        '8-K',
        '10-Q',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 3,190 training samples
  • Columns: query, docs, and labels
  • Approximate statistics based on the first 1000 samples:
    query docs labels
    type string list list
    details
    • min: 55 characters
    • mean: 103.12 characters
    • max: 180 characters
    • size: 5 elements
    • size: 5 elements
  • Samples:
    query docs labels
    What year over year growth rate was shown for paid memberships in the same table ['10-Q', '10-K', '8-K', 'Earnings', 'DEF14A'] [4, 3, 2, 1, 0]
    How did non‑GAAP EPS growth align with the incentive metrics set for management? ['DEF14A', '8-K', '10-K', '10-Q', 'Earnings'] [2, 1, 0, 0, 0]
    What questions were raised regarding Xcel Energy Inc.’s risk factors and mitigation plans related to the integration of renewable energy sources into their grid? ['10-K', 'Earnings', '8-K', '10-Q', 'DEF14A'] [4, 3, 2, 1, 0]
  • Loss: ListNetLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "mini_batch_size": null
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 798 evaluation samples
  • Columns: query, docs, and labels
  • Approximate statistics based on the first 798 samples:
    query docs labels
    type string list list
    details
    • min: 53 characters
    • mean: 102.91 characters
    • max: 179 characters
    • size: 5 elements
    • size: 5 elements
  • Samples:
    query docs labels
    What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations? ['10-K', 'Earnings', 'DEF14A', '8-K', '10-Q'] [4, 3, 2, 1, 0]
    How does Pentair manage equity award burn rate or share pool availability? ['10-K', 'DEF14A', '10-Q', 'Earnings', '8-K'] [4, 3, 2, 1, 0]
    What key takeaways emerged from Valero Energy Corporation’s most recent earnings announcement? ['10-Q', '10-K', 'Earnings', '8-K', 'DEF14A'] [4, 3, 2, 1, 0]
  • Loss: ListNetLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "mini_batch_size": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 2
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_steps: 100
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 100
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss
0.1253 50 1.5705 -
0.2506 100 1.4843 -
0.3759 150 1.441 -
0.5013 200 1.3953 1.4013
0.6266 250 1.3738 -
0.7519 300 1.3781 -
0.8772 350 1.4106 -
1.0025 400 1.3318 1.4033
1.1278 450 1.3641 -
1.2531 500 1.3413 -
1.3784 550 1.3485 -
1.5038 600 1.3096 1.3498
1.6291 650 1.3473 -
1.7544 700 1.3594 -
1.8797 750 1.3418 -
2.005 800 1.3479 1.3386
2.1303 850 1.3276 -
2.2556 900 1.3361 -
2.3810 950 1.3086 -
2.5063 1000 1.3005 1.3472
2.6316 1050 1.3195 -
2.7569 1100 1.3199 -
2.8822 1150 1.3207 -
3.0075 1200 1.3216 1.3496
3.1328 1250 1.2914 -
3.2581 1300 1.3086 -
3.3835 1350 1.2737 -
3.5088 1400 1.3238 1.3380
3.6341 1450 1.3041 -
3.7594 1500 1.3069 -
3.8847 1550 1.2787 -
4.0100 1600 1.2927 1.3569
4.1353 1650 1.2927 -
4.2607 1700 1.2703 -
4.3860 1750 1.2783 -
4.5113 1800 1.2924 1.3532
4.6366 1850 1.2693 -
4.7619 1900 1.2819 -
4.8872 1950 1.2753 -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.8.0+cu126
  • Accelerate: 1.10.1
  • Datasets: 4.0.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ListNetLoss

@inproceedings{cao2007learning,
    title={Learning to Rank: From Pairwise Approach to Listwise Approach},
    author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
    booktitle={Proceedings of the 24th international conference on Machine learning},
    pages={129--136},
    year={2007}
}
Downloads last month
11
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Pranjal2002/finbert_new_v2

Base model

ProsusAI/finbert
Finetuned
(67)
this model