CrossEncoder based on colbert-ir/colbertv2.0
This is a Cross Encoder model finetuned from colbert-ir/colbertv2.0 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: colbert-ir/colbertv2.0
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("Pranjal2002/finetuned_colbert_finance_v2")
# Get scores for pairs of texts
pairs = [
['What guidance was offered on The Estée Lauder Companies Inc.’s inventory management or supply chain efficiency targets?', 'Earnings'],
['What guidance was offered on The Estée Lauder Companies Inc.’s inventory management or supply chain efficiency targets?', '8-K'],
['What guidance was offered on The Estée Lauder Companies Inc.’s inventory management or supply chain efficiency targets?', 'DEF14A'],
['What guidance was offered on The Estée Lauder Companies Inc.’s inventory management or supply chain efficiency targets?', '10-K'],
['What guidance was offered on The Estée Lauder Companies Inc.’s inventory management or supply chain efficiency targets?', '10-Q'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'What guidance was offered on The Estée Lauder Companies Inc.’s inventory management or supply chain efficiency targets?',
[
'Earnings',
'8-K',
'DEF14A',
'10-K',
'10-Q',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,988 training samples
- Columns:
query
,docs
, andlabels
- Approximate statistics based on the first 1000 samples:
query docs labels type string list list details - min: 53 characters
- mean: 101.87 characters
- max: 197 characters
- size: 5 elements
- size: 5 elements
- Samples:
query docs labels How has Keurig Dr Pepper’s beverage segment profitability trended over recent periods?
['10-Q', '10-K', 'Earnings', '8-K', 'DEF14A']
[4, 3, 2, 1, 0]
How does management describe competitive advantages in generative AI developer tooling
['Earnings', '10-K', 'DEF14A', '8-K', '10-Q']
[4, 3, 2, 1, 0]
What did Mohawk Industries’ leadership say about Mohawk Industries’ share repurchase plans?
['10-K', '10-Q', 'Earnings', 'DEF14A', '8-K']
[2, 2, 1, 0, 0]
- Loss:
ListNetLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null }
Evaluation Dataset
Unnamed Dataset
- Size: 998 evaluation samples
- Columns:
query
,docs
, andlabels
- Approximate statistics based on the first 998 samples:
query docs labels type string list list details - min: 43 characters
- mean: 102.97 characters
- max: 203 characters
- size: 5 elements
- size: 5 elements
- Samples:
query docs labels What guidance was offered on The Estée Lauder Companies Inc.’s inventory management or supply chain efficiency targets?
['Earnings', '8-K', 'DEF14A', '10-K', '10-Q']
[4, 3, 2, 1, 0]
What questions were asked about Live Nation Entertainment’s concert attendance and ticket sales engagement metrics?
['Earnings', '10-K', '8-K', '10-Q', 'DEF14A']
[4, 3, 2, 1, 0]
How has the ratio of AvalonBay Communities’ recurring to one-time rental income evolved in the latest reporting period?
['10-Q', '10-K', 'Earnings', '8-K', 'DEF14A']
[4, 3, 2, 1, 0]
- Loss:
ListNetLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 4gradient_accumulation_steps
: 2learning_rate
: 2e-05num_train_epochs
: 5warmup_steps
: 100fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 100log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1003 | 50 | 1.5717 | - |
0.2006 | 100 | 1.4575 | - |
0.3009 | 150 | 1.4404 | - |
0.4012 | 200 | 1.408 | 1.3705 |
0.5015 | 250 | 1.3936 | - |
0.6018 | 300 | 1.3719 | - |
0.7021 | 350 | 1.3777 | - |
0.8024 | 400 | 1.3689 | 1.3444 |
0.9027 | 450 | 1.3612 | - |
1.0020 | 500 | 1.3263 | - |
1.1023 | 550 | 1.3493 | - |
1.2026 | 600 | 1.3602 | 1.3374 |
1.3029 | 650 | 1.3181 | - |
1.4032 | 700 | 1.3217 | - |
1.5035 | 750 | 1.3431 | - |
1.6038 | 800 | 1.3234 | 1.3374 |
1.7041 | 850 | 1.3317 | - |
1.8044 | 900 | 1.34 | - |
1.9047 | 950 | 1.3467 | - |
2.0040 | 1000 | 1.3236 | 1.3325 |
2.1043 | 1050 | 1.2743 | - |
2.2046 | 1100 | 1.3177 | - |
2.3049 | 1150 | 1.3004 | - |
2.4052 | 1200 | 1.3114 | 1.3274 |
2.5055 | 1250 | 1.3138 | - |
2.6058 | 1300 | 1.3263 | - |
2.7061 | 1350 | 1.3175 | - |
2.8064 | 1400 | 1.3033 | 1.3462 |
2.9067 | 1450 | 1.3112 | - |
3.0060 | 1500 | 1.3025 | - |
3.1063 | 1550 | 1.2818 | - |
3.2066 | 1600 | 1.2768 | 1.3426 |
3.3069 | 1650 | 1.275 | - |
3.4072 | 1700 | 1.3024 | - |
3.5075 | 1750 | 1.2765 | - |
3.6078 | 1800 | 1.2932 | 1.3467 |
3.7081 | 1850 | 1.2774 | - |
3.8084 | 1900 | 1.2759 | - |
3.9087 | 1950 | 1.2991 | - |
4.0080 | 2000 | 1.2763 | 1.3368 |
4.1083 | 2050 | 1.253 | - |
4.2086 | 2100 | 1.243 | - |
4.3089 | 2150 | 1.2719 | - |
4.4092 | 2200 | 1.256 | 1.3448 |
4.5095 | 2250 | 1.2718 | - |
4.6098 | 2300 | 1.2536 | - |
4.7101 | 2350 | 1.2696 | - |
4.8104 | 2400 | 1.2626 | 1.3456 |
4.9107 | 2450 | 1.2736 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ListNetLoss
@inproceedings{cao2007learning,
title={Learning to Rank: From Pairwise Approach to Listwise Approach},
author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
booktitle={Proceedings of the 24th international conference on Machine learning},
pages={129--136},
year={2007}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Pranjal2002/finetuned_colbert_finance_v2
Base model
colbert-ir/colbertv2.0