| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						language: en | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- clip | 
					
					
						
						| 
							 | 
						- vision | 
					
					
						
						| 
							 | 
						- transformers | 
					
					
						
						| 
							 | 
						- interpretability | 
					
					
						
						| 
							 | 
						- sparse autoencoder | 
					
					
						
						| 
							 | 
						- sae | 
					
					
						
						| 
							 | 
						- mechanistic interpretability | 
					
					
						
						| 
							 | 
						license: apache-2.0 | 
					
					
						
						| 
							 | 
						library_name: torch | 
					
					
						
						| 
							 | 
						pipeline_tag: feature-extraction | 
					
					
						
						| 
							 | 
						metrics: | 
					
					
						
						| 
							 | 
						- type: explained_variance  | 
					
					
						
						| 
							 | 
						  value: 79.3 | 
					
					
						
						| 
							 | 
						  pretty_name: Explained Variance % | 
					
					
						
						| 
							 | 
						  range: | 
					
					
						
						| 
							 | 
						    min: 0 | 
					
					
						
						| 
							 | 
						    max: 100 | 
					
					
						
						| 
							 | 
						- type: l0 | 
					
					
						
						| 
							 | 
						  value: 287.601 | 
					
					
						
						| 
							 | 
						  pretty_name: L0  | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# CLIP-B-32 Sparse Autoencoder x64 vanilla - L1:8e-05 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Training Details | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- Base Model: CLIP-ViT-B-32 (LAION DataComp.XL-s13B-b90K) | 
					
					
						
						| 
							 | 
						- Layer: 11 | 
					
					
						
						| 
							 | 
						- Component: hook_resid_post | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Model Architecture | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- Input Dimension: 768 | 
					
					
						
						| 
							 | 
						- SAE Dimension: 49,152 | 
					
					
						
						| 
							 | 
						- Expansion Factor: x64 (vanilla architecture) | 
					
					
						
						| 
							 | 
						- Activation Function: ReLU | 
					
					
						
						| 
							 | 
						- Initialization: encoder_transpose_decoder | 
					
					
						
						| 
							 | 
						- Context Size: 50 tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Performance Metrics | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- L1 Coefficient: 8e-05 | 
					
					
						
						| 
							 | 
						- L0 Sparsity: 287.6007 | 
					
					
						
						| 
							 | 
						- Explained Variance: 0.7931 (79.31%) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Training Configuration | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- Learning Rate: 0.0004 | 
					
					
						
						| 
							 | 
						- LR Scheduler: Cosine Annealing with Warmup (200 steps) | 
					
					
						
						| 
							 | 
						- Epochs: 10 | 
					
					
						
						| 
							 | 
						- Gradient Clipping: 1.0 | 
					
					
						
						| 
							 | 
						- Device: NVIDIA Quadro RTX 8000 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**Experiment Tracking:** | 
					
					
						
						| 
							 | 
						- Weights & Biases Run ID: xwlpfrzs | 
					
					
						
						| 
							 | 
						- Full experiment details: https://wandb.ai/perceptual-alignment/clip/runs/xwlpfrzs/overview | 
					
					
						
						| 
							 | 
						- Git Commit: e22dd02726b74a054a779a4805b96059d83244aa | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Citation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bibtex | 
					
					
						
						| 
							 | 
						@misc{2024josephsparseautoencoders, | 
					
					
						
						| 
							 | 
						    title={Sparse Autoencoders for CLIP-ViT-B-32}, | 
					
					
						
						| 
							 | 
						    author={Joseph, Sonia}, | 
					
					
						
						| 
							 | 
						    year={2024}, | 
					
					
						
						| 
							 | 
						    publisher={Prisma-Multimodal}, | 
					
					
						
						| 
							 | 
						    url={https://huggingface.co/Prisma-Multimodal}, | 
					
					
						
						| 
							 | 
						    note={Layer 11, hook_resid_post, Run ID: xwlpfrzs} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						 |