bert-5-epoch-sentiment
This model is a fine-tuned version of bert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 2.5187
- Accuracy: 0.6754
- Precision: 0.6780
- Recall: 0.6754
- Micro-avg-recall: 0.6754
- Micro-avg-precision: 0.6754
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
---|---|---|---|---|---|---|---|---|
0.0381 | 1.0 | 2851 | 2.4402 | 0.6588 | 0.6676 | 0.6588 | 0.6588 | 0.6588 |
0.0401 | 2.0 | 5702 | 2.7499 | 0.6527 | 0.6647 | 0.6527 | 0.6527 | 0.6527 |
0.1609 | 3.0 | 8553 | 2.0380 | 0.6687 | 0.6724 | 0.6687 | 0.6687 | 0.6687 |
0.1811 | 4.0 | 11404 | 2.3206 | 0.6679 | 0.6753 | 0.6679 | 0.6679 | 0.6679 |
0.0987 | 5.0 | 14255 | 2.5187 | 0.6754 | 0.6780 | 0.6754 | 0.6754 | 0.6754 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
- Downloads last month
- 50
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Priyanka-Balivada/bert-5-epoch-sentiment
Base model
google-bert/bert-base-uncasedDataset used to train Priyanka-Balivada/bert-5-epoch-sentiment
Evaluation results
- Accuracy on tweet_evaltest set self-reported0.675
- Precision on tweet_evaltest set self-reported0.678
- Recall on tweet_evaltest set self-reported0.675