segformer-b0-finetuned-batch3-26May-2
This model is a fine-tuned version of PushkarA07/segformer-b0-finetuned-batch2w5-15Dec on the PushkarA07/batch3-tiles_third dataset. It achieves the following results on the evaluation set:
- Loss: 0.0007
- Mean Iou: 0.9173
- Mean Accuracy: 0.9515
- Overall Accuracy: 0.9997
- Accuracy Abnormality: 0.9030
- Iou Abnormality: 0.8348
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Abnormality | Iou Abnormality |
---|---|---|---|---|---|---|---|---|
0.0012 | 0.7143 | 10 | 0.0017 | 0.8437 | 0.8917 | 0.9994 | 0.7835 | 0.6879 |
0.0012 | 1.4286 | 20 | 0.0013 | 0.8539 | 0.8779 | 0.9995 | 0.7559 | 0.7082 |
0.001 | 2.1429 | 30 | 0.0012 | 0.8684 | 0.8944 | 0.9996 | 0.7889 | 0.7372 |
0.0006 | 2.8571 | 40 | 0.0011 | 0.8746 | 0.8991 | 0.9996 | 0.7983 | 0.7496 |
0.001 | 3.5714 | 50 | 0.0010 | 0.8839 | 0.9185 | 0.9996 | 0.8371 | 0.7681 |
0.0012 | 4.2857 | 60 | 0.0010 | 0.8867 | 0.9189 | 0.9996 | 0.8380 | 0.7737 |
0.0022 | 5.0 | 70 | 0.0010 | 0.8901 | 0.9211 | 0.9996 | 0.8423 | 0.7806 |
0.0017 | 5.7143 | 80 | 0.0009 | 0.8913 | 0.9254 | 0.9996 | 0.8510 | 0.7829 |
0.0016 | 6.4286 | 90 | 0.0009 | 0.8921 | 0.9237 | 0.9996 | 0.8475 | 0.7846 |
0.001 | 7.1429 | 100 | 0.0009 | 0.8946 | 0.9278 | 0.9996 | 0.8557 | 0.7895 |
0.0012 | 7.8571 | 110 | 0.0009 | 0.8935 | 0.9226 | 0.9996 | 0.8453 | 0.7873 |
0.0011 | 8.5714 | 120 | 0.0009 | 0.8963 | 0.9314 | 0.9996 | 0.8629 | 0.7929 |
0.001 | 9.2857 | 130 | 0.0009 | 0.8980 | 0.9325 | 0.9996 | 0.8652 | 0.7963 |
0.0006 | 10.0 | 140 | 0.0009 | 0.8978 | 0.9303 | 0.9996 | 0.8608 | 0.7959 |
0.001 | 10.7143 | 150 | 0.0009 | 0.8996 | 0.9366 | 0.9997 | 0.8732 | 0.7995 |
0.001 | 11.4286 | 160 | 0.0009 | 0.9016 | 0.9463 | 0.9997 | 0.8928 | 0.8036 |
0.0004 | 12.1429 | 170 | 0.0009 | 0.9019 | 0.9494 | 0.9997 | 0.8990 | 0.8042 |
0.0002 | 12.8571 | 180 | 0.0009 | 0.9004 | 0.9341 | 0.9997 | 0.8683 | 0.8012 |
0.0011 | 13.5714 | 190 | 0.0009 | 0.9026 | 0.9488 | 0.9997 | 0.8977 | 0.8055 |
0.0005 | 14.2857 | 200 | 0.0008 | 0.9014 | 0.9385 | 0.9997 | 0.8772 | 0.8031 |
0.0007 | 15.0 | 210 | 0.0008 | 0.9013 | 0.9354 | 0.9997 | 0.8709 | 0.8028 |
0.0013 | 15.7143 | 220 | 0.0008 | 0.9047 | 0.9445 | 0.9997 | 0.8892 | 0.8098 |
0.0004 | 16.4286 | 230 | 0.0008 | 0.9015 | 0.9334 | 0.9997 | 0.8670 | 0.8034 |
0.0009 | 17.1429 | 240 | 0.0008 | 0.9057 | 0.9500 | 0.9997 | 0.9002 | 0.8117 |
0.0016 | 17.8571 | 250 | 0.0008 | 0.9060 | 0.9451 | 0.9997 | 0.8904 | 0.8124 |
0.0011 | 18.5714 | 260 | 0.0008 | 0.9052 | 0.9432 | 0.9997 | 0.8865 | 0.8107 |
0.0007 | 19.2857 | 270 | 0.0008 | 0.9069 | 0.9476 | 0.9997 | 0.8953 | 0.8141 |
0.0007 | 20.0 | 280 | 0.0008 | 0.9073 | 0.9488 | 0.9997 | 0.8977 | 0.8150 |
0.001 | 20.7143 | 290 | 0.0008 | 0.9033 | 0.9329 | 0.9997 | 0.8660 | 0.8068 |
0.0006 | 21.4286 | 300 | 0.0008 | 0.9079 | 0.9492 | 0.9997 | 0.8985 | 0.8162 |
0.0009 | 22.1429 | 310 | 0.0008 | 0.9070 | 0.9494 | 0.9997 | 0.8990 | 0.8143 |
0.0007 | 22.8571 | 320 | 0.0008 | 0.9070 | 0.9438 | 0.9997 | 0.8877 | 0.8142 |
0.0006 | 23.5714 | 330 | 0.0008 | 0.9071 | 0.9458 | 0.9997 | 0.8918 | 0.8146 |
0.001 | 24.2857 | 340 | 0.0008 | 0.9088 | 0.9455 | 0.9997 | 0.8912 | 0.8179 |
0.0006 | 25.0 | 350 | 0.0008 | 0.9105 | 0.9477 | 0.9997 | 0.8955 | 0.8214 |
0.0009 | 25.7143 | 360 | 0.0008 | 0.9090 | 0.9477 | 0.9997 | 0.8955 | 0.8184 |
0.001 | 26.4286 | 370 | 0.0008 | 0.9096 | 0.9521 | 0.9997 | 0.9043 | 0.8196 |
0.0012 | 27.1429 | 380 | 0.0008 | 0.9089 | 0.9465 | 0.9997 | 0.8931 | 0.8181 |
0.0006 | 27.8571 | 390 | 0.0008 | 0.9100 | 0.9487 | 0.9997 | 0.8976 | 0.8203 |
0.0006 | 28.5714 | 400 | 0.0008 | 0.9097 | 0.9484 | 0.9997 | 0.8970 | 0.8198 |
0.0004 | 29.2857 | 410 | 0.0008 | 0.9088 | 0.9565 | 0.9997 | 0.9131 | 0.8179 |
0.0013 | 30.0 | 420 | 0.0008 | 0.9073 | 0.9413 | 0.9997 | 0.8828 | 0.8150 |
0.0007 | 30.7143 | 430 | 0.0008 | 0.9086 | 0.9441 | 0.9997 | 0.8883 | 0.8176 |
0.0011 | 31.4286 | 440 | 0.0008 | 0.9109 | 0.9575 | 0.9997 | 0.9151 | 0.8221 |
0.0004 | 32.1429 | 450 | 0.0008 | 0.9112 | 0.9525 | 0.9997 | 0.9051 | 0.8227 |
0.0011 | 32.8571 | 460 | 0.0008 | 0.9118 | 0.9469 | 0.9997 | 0.8939 | 0.8239 |
0.0006 | 33.5714 | 470 | 0.0008 | 0.9112 | 0.9559 | 0.9997 | 0.9119 | 0.8228 |
0.0004 | 34.2857 | 480 | 0.0008 | 0.9104 | 0.9535 | 0.9997 | 0.9072 | 0.8210 |
0.0006 | 35.0 | 490 | 0.0008 | 0.9107 | 0.9450 | 0.9997 | 0.8902 | 0.8218 |
0.0011 | 35.7143 | 500 | 0.0008 | 0.9128 | 0.9509 | 0.9997 | 0.9019 | 0.8258 |
0.0004 | 36.4286 | 510 | 0.0008 | 0.9118 | 0.9502 | 0.9997 | 0.9005 | 0.8239 |
0.0007 | 37.1429 | 520 | 0.0008 | 0.9135 | 0.9534 | 0.9997 | 0.9070 | 0.8273 |
0.0005 | 37.8571 | 530 | 0.0008 | 0.9106 | 0.9422 | 0.9997 | 0.8845 | 0.8216 |
0.0011 | 38.5714 | 540 | 0.0008 | 0.9125 | 0.9501 | 0.9997 | 0.9004 | 0.8252 |
0.0006 | 39.2857 | 550 | 0.0008 | 0.9130 | 0.9553 | 0.9997 | 0.9107 | 0.8264 |
0.001 | 40.0 | 560 | 0.0008 | 0.9110 | 0.9454 | 0.9997 | 0.8909 | 0.8224 |
0.001 | 40.7143 | 570 | 0.0008 | 0.9135 | 0.9546 | 0.9997 | 0.9094 | 0.8272 |
0.0009 | 41.4286 | 580 | 0.0008 | 0.9131 | 0.9529 | 0.9997 | 0.9060 | 0.8265 |
0.0007 | 42.1429 | 590 | 0.0008 | 0.9112 | 0.9479 | 0.9997 | 0.8959 | 0.8227 |
0.0005 | 42.8571 | 600 | 0.0007 | 0.9131 | 0.9514 | 0.9997 | 0.9029 | 0.8265 |
0.0005 | 43.5714 | 610 | 0.0008 | 0.9110 | 0.9435 | 0.9997 | 0.8871 | 0.8224 |
0.0005 | 44.2857 | 620 | 0.0008 | 0.9126 | 0.9575 | 0.9997 | 0.9152 | 0.8255 |
0.0003 | 45.0 | 630 | 0.0007 | 0.9121 | 0.9480 | 0.9997 | 0.8962 | 0.8244 |
0.0003 | 45.7143 | 640 | 0.0008 | 0.9109 | 0.9432 | 0.9997 | 0.8865 | 0.8221 |
0.0006 | 46.4286 | 650 | 0.0007 | 0.9139 | 0.9519 | 0.9997 | 0.9039 | 0.8281 |
0.0003 | 47.1429 | 660 | 0.0008 | 0.9132 | 0.9547 | 0.9997 | 0.9096 | 0.8267 |
0.0012 | 47.8571 | 670 | 0.0008 | 0.9114 | 0.9444 | 0.9997 | 0.8888 | 0.8230 |
0.0008 | 48.5714 | 680 | 0.0007 | 0.9138 | 0.9546 | 0.9997 | 0.9093 | 0.8279 |
0.001 | 49.2857 | 690 | 0.0007 | 0.9136 | 0.9512 | 0.9997 | 0.9025 | 0.8275 |
0.0009 | 50.0 | 700 | 0.0007 | 0.9127 | 0.9490 | 0.9997 | 0.8982 | 0.8258 |
0.0006 | 50.7143 | 710 | 0.0007 | 0.9143 | 0.9527 | 0.9997 | 0.9055 | 0.8289 |
0.0011 | 51.4286 | 720 | 0.0007 | 0.9127 | 0.9475 | 0.9997 | 0.8951 | 0.8257 |
0.0003 | 52.1429 | 730 | 0.0007 | 0.9138 | 0.9500 | 0.9997 | 0.9002 | 0.8280 |
0.0005 | 52.8571 | 740 | 0.0007 | 0.9141 | 0.9541 | 0.9997 | 0.9083 | 0.8285 |
0.0011 | 53.5714 | 750 | 0.0007 | 0.9146 | 0.9526 | 0.9997 | 0.9052 | 0.8295 |
0.0005 | 54.2857 | 760 | 0.0007 | 0.9139 | 0.9509 | 0.9997 | 0.9019 | 0.8281 |
0.0005 | 55.0 | 770 | 0.0007 | 0.9134 | 0.9468 | 0.9997 | 0.8937 | 0.8270 |
0.0009 | 55.7143 | 780 | 0.0007 | 0.9150 | 0.9528 | 0.9997 | 0.9058 | 0.8302 |
0.0011 | 56.4286 | 790 | 0.0007 | 0.9133 | 0.9461 | 0.9997 | 0.8924 | 0.8268 |
0.0015 | 57.1429 | 800 | 0.0007 | 0.9143 | 0.9507 | 0.9997 | 0.9016 | 0.8289 |
0.0009 | 57.8571 | 810 | 0.0007 | 0.9148 | 0.9509 | 0.9997 | 0.9019 | 0.8299 |
0.0006 | 58.5714 | 820 | 0.0007 | 0.9146 | 0.9507 | 0.9997 | 0.9015 | 0.8294 |
0.0003 | 59.2857 | 830 | 0.0007 | 0.9152 | 0.9530 | 0.9997 | 0.9062 | 0.8307 |
0.0006 | 60.0 | 840 | 0.0007 | 0.9144 | 0.9487 | 0.9997 | 0.8974 | 0.8292 |
0.0006 | 60.7143 | 850 | 0.0007 | 0.9149 | 0.9529 | 0.9997 | 0.9060 | 0.8300 |
0.0006 | 61.4286 | 860 | 0.0007 | 0.9159 | 0.9556 | 0.9997 | 0.9115 | 0.8320 |
0.0004 | 62.1429 | 870 | 0.0007 | 0.9143 | 0.9499 | 0.9997 | 0.8999 | 0.8288 |
0.0008 | 62.8571 | 880 | 0.0007 | 0.9150 | 0.9537 | 0.9997 | 0.9076 | 0.8303 |
0.0008 | 63.5714 | 890 | 0.0007 | 0.9154 | 0.9493 | 0.9997 | 0.8987 | 0.8311 |
0.0006 | 64.2857 | 900 | 0.0007 | 0.9158 | 0.9572 | 0.9997 | 0.9146 | 0.8319 |
0.0013 | 65.0 | 910 | 0.0007 | 0.9150 | 0.9509 | 0.9997 | 0.9020 | 0.8304 |
0.0008 | 65.7143 | 920 | 0.0007 | 0.9148 | 0.9487 | 0.9997 | 0.8974 | 0.8300 |
0.0009 | 66.4286 | 930 | 0.0007 | 0.9164 | 0.9555 | 0.9997 | 0.9111 | 0.8332 |
0.0007 | 67.1429 | 940 | 0.0007 | 0.9167 | 0.9521 | 0.9997 | 0.9043 | 0.8337 |
0.0005 | 67.8571 | 950 | 0.0007 | 0.9163 | 0.9540 | 0.9997 | 0.9082 | 0.8328 |
0.0009 | 68.5714 | 960 | 0.0007 | 0.9157 | 0.9489 | 0.9997 | 0.8979 | 0.8316 |
0.001 | 69.2857 | 970 | 0.0007 | 0.9160 | 0.9548 | 0.9997 | 0.9098 | 0.8322 |
0.0006 | 70.0 | 980 | 0.0007 | 0.9156 | 0.9492 | 0.9997 | 0.8985 | 0.8315 |
0.001 | 70.7143 | 990 | 0.0007 | 0.9160 | 0.9507 | 0.9997 | 0.9015 | 0.8323 |
0.0006 | 71.4286 | 1000 | 0.0007 | 0.9154 | 0.9484 | 0.9997 | 0.8970 | 0.8310 |
0.0014 | 72.1429 | 1010 | 0.0007 | 0.9165 | 0.9534 | 0.9997 | 0.9068 | 0.8332 |
0.0008 | 72.8571 | 1020 | 0.0007 | 0.9165 | 0.9513 | 0.9997 | 0.9028 | 0.8333 |
0.0007 | 73.5714 | 1030 | 0.0007 | 0.9167 | 0.9530 | 0.9997 | 0.9061 | 0.8338 |
0.0008 | 74.2857 | 1040 | 0.0007 | 0.9159 | 0.9526 | 0.9997 | 0.9052 | 0.8321 |
0.0006 | 75.0 | 1050 | 0.0007 | 0.9154 | 0.9503 | 0.9997 | 0.9007 | 0.8312 |
0.0007 | 75.7143 | 1060 | 0.0007 | 0.9165 | 0.9545 | 0.9997 | 0.9091 | 0.8332 |
0.0011 | 76.4286 | 1070 | 0.0007 | 0.9168 | 0.9543 | 0.9997 | 0.9087 | 0.8338 |
0.0009 | 77.1429 | 1080 | 0.0007 | 0.9158 | 0.9527 | 0.9997 | 0.9055 | 0.8320 |
0.0005 | 77.8571 | 1090 | 0.0007 | 0.9168 | 0.9511 | 0.9997 | 0.9023 | 0.8338 |
0.0005 | 78.5714 | 1100 | 0.0007 | 0.9162 | 0.9502 | 0.9997 | 0.9005 | 0.8328 |
0.0009 | 79.2857 | 1110 | 0.0007 | 0.9174 | 0.9533 | 0.9997 | 0.9068 | 0.8350 |
0.0004 | 80.0 | 1120 | 0.0007 | 0.9162 | 0.9495 | 0.9997 | 0.8990 | 0.8327 |
0.0002 | 80.7143 | 1130 | 0.0007 | 0.9165 | 0.9507 | 0.9997 | 0.9014 | 0.8332 |
0.0005 | 81.4286 | 1140 | 0.0007 | 0.9164 | 0.9499 | 0.9997 | 0.8999 | 0.8332 |
0.0009 | 82.1429 | 1150 | 0.0007 | 0.9170 | 0.9543 | 0.9997 | 0.9087 | 0.8342 |
0.0009 | 82.8571 | 1160 | 0.0007 | 0.9165 | 0.9523 | 0.9997 | 0.9048 | 0.8334 |
0.0006 | 83.5714 | 1170 | 0.0007 | 0.9165 | 0.9519 | 0.9997 | 0.9039 | 0.8332 |
0.0008 | 84.2857 | 1180 | 0.0007 | 0.9161 | 0.9515 | 0.9997 | 0.9032 | 0.8325 |
0.0006 | 85.0 | 1190 | 0.0007 | 0.9169 | 0.9525 | 0.9997 | 0.9051 | 0.8340 |
0.0005 | 85.7143 | 1200 | 0.0007 | 0.9167 | 0.9518 | 0.9997 | 0.9037 | 0.8337 |
0.0002 | 86.4286 | 1210 | 0.0007 | 0.9167 | 0.9519 | 0.9997 | 0.9040 | 0.8337 |
0.0004 | 87.1429 | 1220 | 0.0007 | 0.9167 | 0.9518 | 0.9997 | 0.9037 | 0.8337 |
0.0009 | 87.8571 | 1230 | 0.0007 | 0.9169 | 0.9520 | 0.9997 | 0.9042 | 0.8340 |
0.0011 | 88.5714 | 1240 | 0.0007 | 0.9171 | 0.9526 | 0.9997 | 0.9053 | 0.8345 |
0.0006 | 89.2857 | 1250 | 0.0007 | 0.9171 | 0.9518 | 0.9997 | 0.9037 | 0.8346 |
0.0007 | 90.0 | 1260 | 0.0007 | 0.9174 | 0.9551 | 0.9997 | 0.9104 | 0.8351 |
0.0005 | 90.7143 | 1270 | 0.0007 | 0.9168 | 0.9534 | 0.9997 | 0.9069 | 0.8340 |
0.0007 | 91.4286 | 1280 | 0.0007 | 0.9169 | 0.9519 | 0.9997 | 0.9040 | 0.8341 |
0.0009 | 92.1429 | 1290 | 0.0007 | 0.9175 | 0.9526 | 0.9997 | 0.9052 | 0.8352 |
0.0009 | 92.8571 | 1300 | 0.0007 | 0.9177 | 0.9532 | 0.9997 | 0.9066 | 0.8356 |
0.0007 | 93.5714 | 1310 | 0.0007 | 0.9174 | 0.9525 | 0.9997 | 0.9051 | 0.8351 |
0.0007 | 94.2857 | 1320 | 0.0007 | 0.9170 | 0.9518 | 0.9997 | 0.9037 | 0.8343 |
0.0015 | 95.0 | 1330 | 0.0007 | 0.9173 | 0.9535 | 0.9997 | 0.9071 | 0.8349 |
0.0005 | 95.7143 | 1340 | 0.0007 | 0.9176 | 0.9534 | 0.9997 | 0.9069 | 0.8355 |
0.0007 | 96.4286 | 1350 | 0.0007 | 0.9174 | 0.9525 | 0.9997 | 0.9051 | 0.8351 |
0.001 | 97.1429 | 1360 | 0.0007 | 0.9175 | 0.9527 | 0.9997 | 0.9056 | 0.8353 |
0.001 | 97.8571 | 1370 | 0.0007 | 0.9175 | 0.9526 | 0.9997 | 0.9052 | 0.8354 |
0.0007 | 98.5714 | 1380 | 0.0007 | 0.9173 | 0.9518 | 0.9997 | 0.9037 | 0.8349 |
0.0006 | 99.2857 | 1390 | 0.0007 | 0.9175 | 0.9514 | 0.9997 | 0.9029 | 0.8352 |
0.0011 | 100.0 | 1400 | 0.0007 | 0.9173 | 0.9515 | 0.9997 | 0.9030 | 0.8348 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 92
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PushkarA07/segformer-b0-finetuned-batch3-26May-2
Unable to build the model tree, the base model loops to the model itself. Learn more.