answerdotai-ModernBERT-base-arabic-fp16-allagree
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4267
- Accuracy: 0.8368
- Precision: 0.8342
- Recall: 0.8368
- F1: 0.8285
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.9706 | 0.7463 | 50 | 0.7251 | 0.7108 | 0.7096 | 0.7108 | 0.6814 |
1.3267 | 1.4925 | 100 | 0.5867 | 0.7677 | 0.7808 | 0.7677 | 0.7452 |
1.1549 | 2.2388 | 150 | 0.6251 | 0.7677 | 0.7919 | 0.7677 | 0.7325 |
1.0691 | 2.9851 | 200 | 0.4580 | 0.8330 | 0.8307 | 0.8330 | 0.8304 |
0.9217 | 3.7313 | 250 | 0.4803 | 0.8050 | 0.8245 | 0.8050 | 0.8115 |
0.7758 | 4.4776 | 300 | 0.4267 | 0.8368 | 0.8342 | 0.8368 | 0.8285 |
0.7288 | 5.2239 | 350 | 0.4726 | 0.8293 | 0.8280 | 0.8293 | 0.8201 |
0.5916 | 5.9701 | 400 | 0.4333 | 0.8368 | 0.8385 | 0.8368 | 0.8369 |
0.4328 | 6.7164 | 450 | 0.4511 | 0.8396 | 0.8374 | 0.8396 | 0.8383 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Qanadil/answerdotai-ModernBERT-base-arabic-fp16-allagree
Base model
answerdotai/ModernBERT-base