google-bert-large-uncased-arabic-fp16-allagree
This model is a fine-tuned version of google-bert/bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3863
- Accuracy: 0.8554
- Precision: 0.8580
- Recall: 0.8554
- F1: 0.8563
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.0847 | 0.7463 | 50 | 0.8073 | 0.6838 | 0.7469 | 0.6838 | 0.6079 |
0.7434 | 1.4925 | 100 | 0.5989 | 0.7631 | 0.7790 | 0.7631 | 0.7325 |
0.5675 | 2.2388 | 150 | 0.4732 | 0.8181 | 0.8114 | 0.8181 | 0.8125 |
0.5108 | 2.9851 | 200 | 0.4486 | 0.8162 | 0.8107 | 0.8162 | 0.8123 |
0.4261 | 3.7313 | 250 | 0.4340 | 0.8368 | 0.8427 | 0.8368 | 0.8304 |
0.3764 | 4.4776 | 300 | 0.3863 | 0.8554 | 0.8580 | 0.8554 | 0.8563 |
0.3405 | 5.2239 | 350 | 0.3998 | 0.8573 | 0.8566 | 0.8573 | 0.8535 |
0.2931 | 5.9701 | 400 | 0.4547 | 0.8330 | 0.8533 | 0.8330 | 0.8378 |
0.243 | 6.7164 | 450 | 0.4321 | 0.8451 | 0.8567 | 0.8451 | 0.8489 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Qanadil/google-bert-large-uncased-arabic-fp16-allagree
Base model
google-bert/bert-large-uncased