pali_191805

This model is a fine-tuned version of google/paligemma-3b-pt-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8563

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
18.2133 0.0444 50 1.7766
11.9694 0.0889 100 1.3043
9.7625 0.1333 150 1.1940
9.0576 0.1778 200 1.1325
9.3286 0.2222 250 1.0906
8.5435 0.2667 300 1.0586
8.2508 0.3111 350 1.0357
8.3642 0.3556 400 1.0151
8.0343 0.4 450 0.9982
8.1537 0.4444 500 0.9818
7.6705 0.4889 550 0.9672
7.6794 0.5333 600 0.9557
7.3842 0.5778 650 0.9470
7.5392 0.6222 700 0.9343
7.3926 0.6667 750 0.9233
7.5391 0.7111 800 0.9141
7.3299 0.7556 850 0.9053
7.3423 0.8 900 0.8974
7.4747 0.8444 950 0.8911
7.252 0.8889 1000 0.8832
7.1392 0.9333 1050 0.8783
6.9769 0.9778 1100 0.8719
7.0285 1.0222 1150 0.8665
6.8336 1.0667 1200 0.8613
6.748 1.1111 1250 0.8563

Framework versions

  • PEFT 0.14.0
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for QuanHoangNgoc/lock_pali_191805

Adapter
(225)
this model