s2t-small-uit-vimd-finetuned
This model is a fine-tuned version of s2t-small-librispeech-asr on the UIT-ViMD dataset. It achieves the following results on the evaluation set:
- Loss: 4.1774
- Wer: 156.0641
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.5697 | 0.0990 | 93 | 6.4030 | 100.9153 |
6.4339 | 0.1981 | 186 | 6.2123 | 267.7346 |
6.2304 | 0.2971 | 279 | 5.9593 | 183.6766 |
5.9361 | 0.3962 | 372 | 5.4394 | 119.9085 |
5.611 | 0.4952 | 465 | 5.0782 | 217.6201 |
5.4075 | 0.5942 | 558 | 5.0541 | 183.9054 |
5.2848 | 0.6933 | 651 | 4.9875 | 102.9748 |
5.1533 | 0.7923 | 744 | 4.8326 | 175.1335 |
5.0337 | 0.8914 | 837 | 4.9110 | 210.6026 |
4.9704 | 0.9904 | 930 | 4.7458 | 243.0206 |
4.8977 | 1.0895 | 1023 | 5.0089 | 153.5469 |
4.8621 | 1.1885 | 1116 | 4.4668 | 159.4966 |
4.7784 | 1.2875 | 1209 | 4.7943 | 234.4775 |
4.7841 | 1.3866 | 1302 | 4.4658 | 249.8856 |
4.7533 | 1.4856 | 1395 | 4.5277 | 249.9619 |
4.7271 | 1.5847 | 1488 | 4.7147 | 167.1243 |
4.7165 | 1.6837 | 1581 | 4.4671 | 181.6934 |
4.7034 | 1.7827 | 1674 | 4.6343 | 174.5995 |
4.6697 | 1.8818 | 1767 | 4.6031 | 181.0831 |
4.6511 | 1.9808 | 1860 | 4.5789 | 210.7551 |
4.582 | 2.0799 | 1953 | 4.4299 | 202.5934 |
4.5487 | 2.1789 | 2046 | 4.5597 | 158.7338 |
4.5324 | 2.2780 | 2139 | 4.1907 | 184.3631 |
4.5213 | 2.3770 | 2232 | 4.3382 | 187.4905 |
4.5139 | 2.4760 | 2325 | 4.1682 | 203.5088 |
4.4873 | 2.5751 | 2418 | 4.8307 | 153.6995 |
4.4675 | 2.6741 | 2511 | 4.3182 | 180.5492 |
4.5047 | 2.7732 | 2604 | 4.1314 | 186.3463 |
4.4808 | 2.8722 | 2697 | 4.0971 | 184.8207 |
4.4626 | 2.9712 | 2790 | 4.2918 | 187.9481 |
4.4058 | 3.0703 | 2883 | 4.2169 | 190.5416 |
4.3554 | 3.1693 | 2976 | 4.2198 | 163.7681 |
4.3842 | 3.2684 | 3069 | 4.1875 | 187.5667 |
4.3664 | 3.3674 | 3162 | 4.4539 | 177.8032 |
4.3472 | 3.4665 | 3255 | 4.3428 | 173.6079 |
4.35 | 3.5655 | 3348 | 4.2917 | 176.7353 |
4.3769 | 3.6645 | 3441 | 3.8971 | 179.4813 |
4.3513 | 3.7636 | 3534 | 3.9561 | 185.4310 |
4.3595 | 3.8626 | 3627 | 4.3058 | 176.8116 |
4.3246 | 3.9617 | 3720 | 4.4962 | 160.0305 |
4.2921 | 4.0607 | 3813 | 4.5301 | 164.6834 |
4.3408 | 4.1597 | 3906 | 4.0017 | 172.6163 |
4.2625 | 4.2588 | 3999 | 4.1774 | 156.0641 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support