s2t-small-uit-vimd-finetuned

This model is a fine-tuned version of s2t-small-librispeech-asr on the UIT-ViMD dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1774
  • Wer: 156.0641

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.5697 0.0990 93 6.4030 100.9153
6.4339 0.1981 186 6.2123 267.7346
6.2304 0.2971 279 5.9593 183.6766
5.9361 0.3962 372 5.4394 119.9085
5.611 0.4952 465 5.0782 217.6201
5.4075 0.5942 558 5.0541 183.9054
5.2848 0.6933 651 4.9875 102.9748
5.1533 0.7923 744 4.8326 175.1335
5.0337 0.8914 837 4.9110 210.6026
4.9704 0.9904 930 4.7458 243.0206
4.8977 1.0895 1023 5.0089 153.5469
4.8621 1.1885 1116 4.4668 159.4966
4.7784 1.2875 1209 4.7943 234.4775
4.7841 1.3866 1302 4.4658 249.8856
4.7533 1.4856 1395 4.5277 249.9619
4.7271 1.5847 1488 4.7147 167.1243
4.7165 1.6837 1581 4.4671 181.6934
4.7034 1.7827 1674 4.6343 174.5995
4.6697 1.8818 1767 4.6031 181.0831
4.6511 1.9808 1860 4.5789 210.7551
4.582 2.0799 1953 4.4299 202.5934
4.5487 2.1789 2046 4.5597 158.7338
4.5324 2.2780 2139 4.1907 184.3631
4.5213 2.3770 2232 4.3382 187.4905
4.5139 2.4760 2325 4.1682 203.5088
4.4873 2.5751 2418 4.8307 153.6995
4.4675 2.6741 2511 4.3182 180.5492
4.5047 2.7732 2604 4.1314 186.3463
4.4808 2.8722 2697 4.0971 184.8207
4.4626 2.9712 2790 4.2918 187.9481
4.4058 3.0703 2883 4.2169 190.5416
4.3554 3.1693 2976 4.2198 163.7681
4.3842 3.2684 3069 4.1875 187.5667
4.3664 3.3674 3162 4.4539 177.8032
4.3472 3.4665 3255 4.3428 173.6079
4.35 3.5655 3348 4.2917 176.7353
4.3769 3.6645 3441 3.8971 179.4813
4.3513 3.7636 3534 3.9561 185.4310
4.3595 3.8626 3627 4.3058 176.8116
4.3246 3.9617 3720 4.4962 160.0305
4.2921 4.0607 3813 4.5301 164.6834
4.3408 4.1597 3906 4.0017 172.6163
4.2625 4.2588 3999 4.1774 156.0641

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
32.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results