metadata
library_name: transformers
language:
- vi
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- speech-to-text
- vietnamese
- uit-vimd
- generated_from_trainer
datasets:
- uit-vimd
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-53_030909
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: UIT-ViMD
type: uit-vimd
metrics:
- name: Wer
type: wer
value: 0.9996964638033086
wav2vec2-large-xlsr-53_030909
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the UIT-ViMD dataset. It achieves the following results on the evaluation set:
- Loss: 3.3345
- Wer: 0.9997
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
13.8904 | 0.9231 | 3 | 12.5105 | 0.9998 |
10.5144 | 1.6154 | 6 | 12.2960 | 1.0 |
9.314 | 2.3077 | 9 | 9.0572 | 0.9997 |
7.7092 | 3.0 | 12 | 6.5385 | 0.9997 |
7.2508 | 3.9231 | 15 | 5.3754 | 0.9997 |
4.2192 | 4.6154 | 18 | 4.6707 | 0.9997 |
3.7228 | 5.3077 | 21 | 4.2868 | 0.9997 |
3.4506 | 6.0 | 24 | 4.0406 | 0.9997 |
4.1163 | 6.9231 | 27 | 3.8480 | 0.9997 |
2.8937 | 7.6154 | 30 | 3.6930 | 0.9997 |
2.8004 | 8.3077 | 33 | 3.5770 | 0.9997 |
2.6908 | 9.0 | 36 | 3.4962 | 0.9997 |
3.5181 | 9.9231 | 39 | 3.4494 | 0.9997 |
2.6012 | 10.6154 | 42 | 3.4272 | 0.9997 |
2.5532 | 11.3077 | 45 | 3.3969 | 0.9997 |
2.5429 | 12.0 | 48 | 3.3711 | 0.9997 |
3.3727 | 12.9231 | 51 | 3.3724 | 0.9997 |
2.5283 | 13.6154 | 54 | 3.3591 | 0.9997 |
2.5149 | 14.3077 | 57 | 3.3542 | 0.9997 |
2.5217 | 15.0 | 60 | 3.3539 | 0.9997 |
3.3412 | 15.9231 | 63 | 3.3400 | 0.9997 |
2.5332 | 16.6154 | 66 | 3.3409 | 0.9998 |
2.4927 | 17.3077 | 69 | 3.3521 | 0.9997 |
2.5114 | 18.0 | 72 | 3.3541 | 0.9997 |
3.3431 | 18.9231 | 75 | 3.3576 | 0.9997 |
2.5085 | 19.6154 | 78 | 3.3484 | 0.9997 |
2.5107 | 20.3077 | 81 | 3.3388 | 0.9997 |
2.4972 | 21.0 | 84 | 3.3349 | 0.9998 |
3.3369 | 21.9231 | 87 | 3.3343 | 0.9997 |
2.5042 | 22.6154 | 90 | 3.3345 | 0.9997 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0