File size: 11,618 Bytes
b429d67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
---
base_model: LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct
base_model_relation: finetune
license: other
license_name: exaone
license_link: LICENSE
language:
- en
- ko
tags:
- lg-ai
- exaone
- exaone-deep
pipeline_tag: text-generation
library_name: transformers
---
[](https://hf.co/QuantFactory)
# QuantFactory/EXAONE-Deep-7.8B-GGUF
This is quantized version of [LGAI-EXAONE/EXAONE-Deep-7.8B](https://huggingface.co/LGAI-EXAONE/EXAONE-Deep-7.8B) created using llama.cpp
# Original Model Card
<p align="center">
<img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
<br>
# EXAONE-Deep-7.8B
## Introduction
We introduce EXAONE Deep, which exhibits superior capabilities in various reasoning tasks including math and coding benchmarks, ranging from 2.4B to 32B parameters developed and released by LG AI Research. Evaluation results show that 1) EXAONE Deep **2.4B** outperforms other models of comparable size, 2) EXAONE Deep **7.8B** outperforms not only open-weight models of comparable scale but also a proprietary reasoning model OpenAI o1-mini, and 3) EXAONE Deep **32B** demonstrates competitive performance against leading open-weight models.
For more details, please refer to our [documentation](https://arxiv.org/abs/2503.12524), [blog](https://www.lgresearch.ai/news/view?seq=543) and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-Deep).
<p align="center">
<img src="assets/exaone_deep_overall_performance.png", width="100%", style="margin: 40 auto;">
This repository contains the reasoning 7.8B language model with the following features:
- Number of Parameters (without embeddings): 6.98B
- Number of Layers: 32
- Number of Attention Heads: GQA with 32 Q-heads and 8 KV-heads
- Vocab Size: 102,400
- Context Length: 32,768 tokens
## Quickstart
We recommend to use `transformers` v4.43.1 or later.
Here is the code snippet to run conversational inference with the model:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
model_name = "LGAI-EXAONE/EXAONE-Deep-7.8B"
streaming = True # choose the streaming option
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Choose your prompt:
# Math example (AIME 2024)
prompt = r"""Let $x,y$ and $z$ be positive real numbers that satisfy the following system of equations:
\[\log_2\left({x \over yz}\right) = {1 \over 2}\]\[\log_2\left({y \over xz}\right) = {1 \over 3}\]\[\log_2\left({z \over xy}\right) = {1 \over 4}\]
Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
Please reason step by step, and put your final answer within \boxed{}."""
# Korean MCQA example (CSAT Math 2025)
prompt = r"""Question : $a_1 = 2$์ธ ์์ด $\{a_n\}$๊ณผ $b_1 = 2$์ธ ๋ฑ์ฐจ์์ด $\{b_n\}$์ด ๋ชจ๋ ์์ฐ์ $n$์ ๋ํ์ฌ\[\sum_{k=1}^{n} \frac{a_k}{b_{k+1}} = \frac{1}{2} n^2\]์ ๋ง์กฑ์ํฌ ๋, $\sum_{k=1}^{5} a_k$์ ๊ฐ์ ๊ตฌํ์ฌ๋ผ.
Options :
A) 120
B) 125
C) 130
D) 135
E) 140
Please reason step by step, and you should write the correct option alphabet (A, B, C, D or E) within \\boxed{}."""
messages = [
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
if streaming:
streamer = TextIteratorStreamer(tokenizer)
thread = Thread(target=model.generate, kwargs=dict(
input_ids=input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=32768,
do_sample=True,
temperature=0.6,
top_p=0.95,
streamer=streamer
))
thread.start()
for text in streamer:
print(text, end="", flush=True)
else:
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=32768,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(tokenizer.decode(output[0]))
```
> ### Note
> The EXAONE Deep models are trained with an optimized configuration,
> so we recommend following the [Usage Guideline](#usage-guideline) section to achieve optimal performance.
## Evaluation
The following table shows the evaluation results of reasoning tasks such as math and coding. The full evaluation results can be found in the [documentation](https://arxiv.org/abs/2503.12524).
<table>
<tr>
<th>Models</th>
<th>MATH-500 (pass@1)</th>
<th>AIME 2024 (pass@1 / cons@64)</th>
<th>AIME 2025 (pass@1 / cons@64)</th>
<th>CSAT Math 2025 (pass@1)</th>
<th>GPQA Diamond (pass@1)</th>
<th>Live Code Bench (pass@1)</th>
</tr>
<tr>
<td>EXAONE Deep 32B</td>
<td>95.7</td>
<td>72.1 / <strong>90.0</strong></td>
<td>65.8 / <strong>80.0</strong></td>
<td><strong>94.5</strong></td>
<td>66.1</td>
<td>59.5</td>
</tr>
<tr>
<td>DeepSeek-R1-Distill-Qwen-32B</td>
<td>94.3</td>
<td>72.6 / 83.3</td>
<td>55.2 / 73.3</td>
<td>84.1</td>
<td>62.1</td>
<td>57.2</td>
</tr>
<tr>
<td>QwQ-32B</td>
<td>95.5</td>
<td>79.5 / 86.7</td>
<td><strong>67.1</strong> / 76.7</td>
<td>94.4</td>
<td>63.3</td>
<td>63.4</td>
</tr>
<tr>
<td>DeepSeek-R1-Distill-Llama-70B</td>
<td>94.5</td>
<td>70.0 / 86.7</td>
<td>53.9 / 66.7</td>
<td>88.8</td>
<td>65.2</td>
<td>57.5</td>
</tr>
<tr>
<td>DeepSeek-R1 (671B)</td>
<td><strong>97.3</strong></td>
<td><strong>79.8</strong> / 86.7</td>
<td>66.8 / <strong>80.0</strong></td>
<td>89.9</td>
<td><strong>71.5</strong></td>
<td><strong>65.9</strong></td>
</tr>
<tr>
<th colspan="7" height="30px"></th>
</tr>
<tr>
<td>EXAONE Deep 7.8B</td>
<td><strong>94.8</strong></td>
<td><strong>70.0</strong> / <strong>83.3</strong></td>
<td><strong>59.6</strong> / <strong>76.7</strong></td>
<td><strong>89.9</strong></td>
<td><strong>62.6</strong></td>
<td><strong>55.2</strong></td>
</tr>
<tr>
<td>DeepSeek-R1-Distill-Qwen-7B</td>
<td>92.8</td>
<td>55.5 / <strong>83.3</strong></td>
<td>38.5 / 56.7</td>
<td>79.7</td>
<td>49.1</td>
<td>37.6</td>
</tr>
<tr>
<td>DeepSeek-R1-Distill-Llama-8B</td>
<td>89.1</td>
<td>50.4 / 80.0</td>
<td>33.6 / 53.3</td>
<td>74.1</td>
<td>49.0</td>
<td>39.6</td>
</tr>
<tr>
<td>OpenAI o1-mini</td>
<td>90.0</td>
<td>63.6 / 80.0</td>
<td>54.8 / 66.7</td>
<td>84.4</td>
<td>60.0</td>
<td>53.8</td>
</tr>
<tr>
<th colspan="7" height="30px"></th>
</tr>
<tr>
<td>EXAONE Deep 2.4B</td>
<td><strong>92.3</strong></td>
<td><strong>52.5</strong> / <strong>76.7</strong></td>
<td><strong>47.9</strong> / <strong>73.3</strong></td>
<td><strong>79.2</strong></td>
<td><strong>54.3</strong></td>
<td><strong>46.6</strong></td>
</tr>
<tr>
<td>DeepSeek-R1-Distill-Qwen-1.5B</td>
<td>83.9</td>
<td>28.9 / 52.7</td>
<td>23.9 / 36.7</td>
<td>65.6</td>
<td>33.8</td>
<td>16.9</td>
</tr>
</table>
## Deployment
EXAONE Deep models can be inferred in the various frameworks, such as:
- `TensorRT-LLM`
- `vLLM`
- `SGLang`
- `llama.cpp`
- `Ollama`
- `LM-Studio`
Please refer to our [EXAONE Deep GitHub](https://github.com/LG-AI-EXAONE/EXAONE-Deep) for more details about the inference frameworks.
## Quantization
We provide the pre-quantized EXAONE Deep models with **AWQ** and several quantization types in **GGUF** format. Please refer to our [EXAONE Deep collection](https://huggingface.co/collections/LGAI-EXAONE/exaone-deep-67d119918816ec6efa79a4aa) to find corresponding quantized models.
## Usage Guideline
To achieve the expected performance, we recommend using the following configurations:
1. Ensure the model starts with `<thought>\n` for reasoning steps. The model's output quality may be degraded when you omit it. You can easily apply this feature by using `tokenizer.apply_chat_template()` with `add_generation_prompt=True`. Please check the example code on [Quickstart](#quickstart) section.
2. The reasoning steps of EXAONE Deep models enclosed by `<thought>\n...\n</thought>` usually have lots of tokens, so previous reasoning steps may be necessary to be removed in multi-turn situation. The provided tokenizer handles this automatically.
3. Avoid using system prompt, and build the instruction on the user prompt.
4. Additional instructions help the models reason more deeply, so that the models generate better output.
- For math problems, the instructions **"Please reason step by step, and put your final answer within \boxed{}."** are helpful.
- For more information on our evaluation setting including prompts, please refer to our [Documentation](https://arxiv.org/abs/2503.12524).
5. In our evaluation, we use `temperature=0.6` and `top_p=0.95` for generation.
6. When evaluating the models, it is recommended to test multiple times to assess the expected performance accurately.
## Limitation
The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflects the views of LG AI Research.
- Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
- Biased responses may be generated, which are associated with age, gender, race, and so on.
- The generated responses rely heavily on statistics from the training data, which can result in the generation of
semantically or syntactically incorrect sentences.
- Since the model does not reflect the latest information, the responses may be false or contradictory.
LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
outputs violating LG AIโs ethical principles when using EXAONE language models.
## License
The model is licensed under [EXAONE AI Model License Agreement 1.1 - NC](./LICENSE)
## Citation
```
@article{exaone-deep,
title={EXAONE Deep: Reasoning Enhanced Language Models},
author={{LG AI Research}},
journal={arXiv preprint arXiv:2503.12524},
year={2025}
}
```
## Contact
LG AI Research Technical Support: contact[email protected]
|