Edit model card

QuantFactory/Gemma-Radiation-RP-9B-GGUF

This is quantized version of Casual-Autopsy/Gemma-Radiation-RP-9B created using llama.cpp

Original Model Card

ToDo: Fill the card with more info.

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

It's a bit of a test merge to dip my toes into merging Gemma 2. Sadly, however, it seems like 8B is my PC's tolerable limit before performance becomes painstakingly and infuriatingly slow, so after this, I might have to sit out on Gemma 2

Merge Method

This model was merged using the Model Stock merge method using Casual-Autopsy/Gemma-Rad-RP as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: crestf411/gemma2-9B-sunfall-v0.5.2
  - model: crestf411/gemma2-9B-daybreak-v0.5
    parameters:
      density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7]
      weight: [0.5, 0.13, 0.5, 0.13, 0.3]
  - model: crestf411/gemstone-9b
    parameters:
      density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7]
      weight: [0.13, 0.5, 0.13, 0.5, 0.13]
merge_method: dare_ties
base_model: crestf411/gemma2-9B-sunfall-v0.5.2
parameters:
  normalize: false
  int8_mask: true
dtype: bfloat16
models:
  - model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3
  - model: nldemo/Gemma-9B-Summarizer-QLoRA
    parameters:
      density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7]
      weight: [0.0625, 0.25, 0.0625, 0.25, 0.0625]
  - model: SillyTilly/google-gemma-2-9b-it+rbojja/gemma2-9b-intent-lora-adapter
    parameters:
      density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7]
      weight: [0.0625, 0.25, 0.0625, 0.25, 0.0625]
  - model: nbeerbower/gemma2-gutenberg-9B
    parameters:
      density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7]
      weight: [0.25, 0.0625, 0.25, 0.0625, 0.25]
merge_method: ties
base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3
parameters:
  normalize: false
  int8_mask: true
dtype: bfloat16
models:
  - model: IlyaGusev/gemma-2-9b-it-abliterated
  - model: TheDrummer/Smegmma-9B-v1
    parameters:
      density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7]
      weight: [0.5, 0.13, 0.5, 0.13, 0.3]
  - model: TheDrummer/Tiger-Gemma-9B-v1
    parameters:
      density: [0.7, 0.5, 0.3, 0.35, 0.65, 0.35, 0.75, 0.25, 0.75, 0.35, 0.65, 0.35, 0.3, 0.5, 0.7]
      weight: [0.13, 0.5, 0.13, 0.5, 0.13]
merge_method: dare_ties
base_model: IlyaGusev/gemma-2-9b-it-abliterated
parameters:
  normalize: false
  int8_mask: true
dtype: bfloat16
models:
  - model: Casual-Autopsy/Gemma-Rad-RP
  - model: Casual-Autopsy/Gemma-Rad-Uncen
  - model: Casual-Autopsy/Gemma-Rad-IQ
merge_method: model_stock
base_model: Casual-Autopsy/Gemma-Rad-RP
dtype: bfloat16
Downloads last month
87
GGUF
Model size
9.24B params
Architecture
gemma2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .