You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

AdvancedLISA - Multimodal Vision+Audio AI

Model Description

AdvancedLISA is a sophisticated multimodal AI model that combines advanced vision and audio processing with reasoning capabilities. The model provides comprehensive scene understanding, emotion recognition, and multimodal analysis.

Key Capabilities

  • Multispectral Vision Processing: Processes 5-channel vision input (RGB + multispectral) with spatial reasoning
  • Advanced Audio Analysis: Comprehensive audio understanding including emotion, speaker, and content analysis
  • Multimodal Fusion: Cross-modal attention between vision and audio modalities
  • Reasoning Module: Transformer-based reasoning with sequence-to-sequence understanding
  • Emotion Recognition: Real-time emotion detection from audio input
  • Spatial Understanding: 3D spatial reasoning and object detection
  • Conversation Memory: Persistent memory across interaction sequences
  • Voice Synthesis: Independent voice generation capabilities

Model Details

  • Model Type: AdvancedLISA
  • Architecture: Vision+Audio Fusion with Reasoning
  • Parameters: 190,809,376 (191M)
  • Trainable Parameters: 190,809,376
  • Input Modalities:
    • Vision: 5-channel multispectral images (224×224)
    • Audio: Mel spectrograms (80 bins × 200 time steps)
  • Sequence Length: 30 frames/steps
  • Device: CPU/GPU compatible
  • Framework: PyTorch

Architecture Components

Component Type Parameters Function
Vision Encoder MultispectralVisionEncoder 15,544,195 Multispectral image processing + 3D spatial reasoning
Audio Encoder AdvancedAudioEncoder 29,479,243 Audio analysis + emotion/speaker detection
Fusion Module AdvancedFusionModule 16,803,334 Cross-modal attention and feature fusion
Reasoning Module ReasoningModule 68,231,168 Transformer-based sequence reasoning
Voice Synthesis IndependentVoiceSynthesis 8,061,965 Voice generation capabilities
Self Awareness SelfAwarenessModule 22,579,201 Identity and context awareness
Conversation Memory ConversationMemory 6,823,937 Persistent dialogue memory

Model Outputs

The model returns a comprehensive output dictionary:

{
    'vision_analysis': {
        'features': [batch, 30, 512],      # Core vision features
        'spatial_3d': [batch, 30, 6],      # 3D spatial understanding  
        'scene': [batch, 30, 1000],        # Scene classification
        'objects': [batch, 30, 80],        # Object detection
        'motion': [batch, 30, 4]           # Motion analysis
    },
    'audio_analysis': {
        'features': [batch, 30, 1024],     # Core audio features
        'spatial': [batch, 30, 4],         # Spatial audio
        'emotion': [batch, 30, 7],         # Emotion classification  
        'speaker': [batch, 30, 256],       # Speaker characteristics
        'content': [batch, 30, 128]        # Content analysis
    },
    'reasoning': [batch, 30, 1024],        # Fused reasoning output
    'timestamp': float,                    # Processing timestamp
    'rl_action': dict                      # Reinforcement learning actions
}

Performance

  • Inference Time: ~17.4s per sequence (CPU)
  • Throughput: ~0.06 sequences/second (CPU)
  • Memory Usage: ~191M parameters
  • Input Resolution: 224×224 images, 80-bin mel spectrograms
  • Sequence Length: Fixed at 30 frames

Note: GPU inference will be significantly faster

Usage

Basic Inference

import torch
import json
from pathlib import Path

# Load model configuration  
config_path = "Qybera/LisaV3.0/config.json"
with open(config_path, 'r') as f:
    config = json.load(f)

# Import and create model (requires lisa_model.py)
from lisa_model import create_lisa_model

model_config = {
    'model_config': {
        'vision_channels': 5,        # Multispectral input
        'audio_channels': 1,
        'vision_hidden': 512,
        'audio_hidden': 512,
        'fused_dim': 1024,
        'voice_hidden': 512,
        'vision_layers': 4,
        'audio_layers': 4,
        'reasoning_layers': 8,
        'mel_bins': 80,
        'max_memory': 50
    },
    'data_config': {
        'frame_size': [224, 224],
        'seq_len': 30,
        'n_mels': 80
    }
}

# Create and load model
model, device = create_lisa_model(model_config)

# Load trained weights
state_dict = torch.load("Qybera/LisaV3.0/pytorch_model.bin", map_location=device)
model.load_state_dict(state_dict)
model.eval()

# Prepare inputs (must be exactly sequence length 30)
vision_input = torch.randn(1, 30, 5, 224, 224).to(device)  # 5-channel multispectral
audio_input = torch.randn(1, 30, 1, 80, 200).to(device)    # Mel spectrograms

# Generate comprehensive analysis
with torch.no_grad():
    output = model(vision_input, audio_input)

# Access different analysis components
vision_features = output['vision_analysis']['features']  # [1, 30, 512]
audio_emotions = output['audio_analysis']['emotion']     # [1, 30, 7]
reasoning_output = output['reasoning']                   # [1, 30, 1024]

print(f"Vision features: {vision_features.shape}")
print(f"Detected emotions: {audio_emotions.shape}")
print(f"Reasoning output: {reasoning_output.shape}")

Batch Processing

# Process multiple sequences
batch_size = 2
vision_batch = torch.randn(batch_size, 30, 5, 224, 224).to(device)
audio_batch = torch.randn(batch_size, 30, 1, 80, 200).to(device)

with torch.no_grad():
    batch_output = model(vision_batch, audio_batch)

print(f"Batch processing: {batch_size} sequences")
print(f"Batch reasoning output: {batch_output['reasoning'].shape}")

Individual Component Access

# Access individual model components
vision_encoder = model.vision_encoder
audio_encoder = model.audio_encoder
reasoning_module = model.reasoning_module

# Use vision encoder separately
vision_analysis = vision_encoder(vision_input)
print("Vision analysis keys:", list(vision_analysis.keys()))

# Use audio encoder separately  
audio_analysis = audio_encoder(audio_input)
print("Audio analysis keys:", list(audio_analysis.keys()))

Input Requirements

⚠️ Important: The model expects exactly 30 frames/steps per sequence due to memory constraints.

  • Vision Input: [batch_size, 30, 5, 224, 224] - 5-channel multispectral images
  • Audio Input: [batch_size, 30, 1, 80, 200] - Mel spectrograms with 80 frequency bins
  • Batch Size: Flexible (tested up to batch_size=2)
  • Sequence Length: Fixed at 30 (longer sequences will cause errors)

Training Information

  • Framework: PyTorch
  • Final Training Loss: 0.611
  • Final Validation Loss: 0.639
  • Training Epochs: 50
  • Learning Rate: 2.14e-05 (with scheduling)
  • Optimizer: AdamW
  • Dataset: YouTube videos with multimodal processing

Limitations

  • Fixed Sequence Length: Must use exactly 30 frames per sequence
  • Memory Constraints: Cannot handle variable sequence lengths due to conversation memory implementation
  • CPU Performance: ~17s per inference on CPU (GPU recommended for real-time use)
  • Input Format: Requires specific multispectral (5-channel) vision input

Applications

  • Multimodal Scene Analysis: Comprehensive understanding of visual scenes with audio context
  • Emotion Recognition: Real-time emotion detection from audio input
  • Content Analysis: Understanding of both visual and audio content
  • Spatial Reasoning: 3D spatial understanding and object detection
  • Interactive AI: Conversation memory enables contextual interactions

Citation

@model{advancedlisa2025,
  title={AdvancedLISA: Multimodal Vision+Audio AI with Advanced Reasoning},
  author={LISA Development Team},
  year={2025},
  url={https://github.com/elijahnzeli1/LISA3D}-private
}

License

Apache-2.0 License - see LICENSE file for details


Model card updated based on comprehensive testing - September 2025

Downloads last month
20
Video Preview
loading

Model tree for Qybera/LisaV3.0

Base model

Qybera/LisaV3
Finetuned
(1)
this model

Dataset used to train Qybera/LisaV3.0