AdvancedLISA - Multimodal Vision+Audio AI
Model Description
AdvancedLISA is a sophisticated multimodal AI model that combines advanced vision and audio processing with reasoning capabilities. The model provides comprehensive scene understanding, emotion recognition, and multimodal analysis.
Key Capabilities
- Multispectral Vision Processing: Processes 5-channel vision input (RGB + multispectral) with spatial reasoning
- Advanced Audio Analysis: Comprehensive audio understanding including emotion, speaker, and content analysis
- Multimodal Fusion: Cross-modal attention between vision and audio modalities
- Reasoning Module: Transformer-based reasoning with sequence-to-sequence understanding
- Emotion Recognition: Real-time emotion detection from audio input
- Spatial Understanding: 3D spatial reasoning and object detection
- Conversation Memory: Persistent memory across interaction sequences
- Voice Synthesis: Independent voice generation capabilities
Model Details
- Model Type: AdvancedLISA
- Architecture: Vision+Audio Fusion with Reasoning
- Parameters: 190,809,376 (191M)
- Trainable Parameters: 190,809,376
- Input Modalities:
- Vision: 5-channel multispectral images (224×224)
- Audio: Mel spectrograms (80 bins × 200 time steps)
- Sequence Length: 30 frames/steps
- Device: CPU/GPU compatible
- Framework: PyTorch
Architecture Components
Component | Type | Parameters | Function |
---|---|---|---|
Vision Encoder | MultispectralVisionEncoder | 15,544,195 | Multispectral image processing + 3D spatial reasoning |
Audio Encoder | AdvancedAudioEncoder | 29,479,243 | Audio analysis + emotion/speaker detection |
Fusion Module | AdvancedFusionModule | 16,803,334 | Cross-modal attention and feature fusion |
Reasoning Module | ReasoningModule | 68,231,168 | Transformer-based sequence reasoning |
Voice Synthesis | IndependentVoiceSynthesis | 8,061,965 | Voice generation capabilities |
Self Awareness | SelfAwarenessModule | 22,579,201 | Identity and context awareness |
Conversation Memory | ConversationMemory | 6,823,937 | Persistent dialogue memory |
Model Outputs
The model returns a comprehensive output dictionary:
{
'vision_analysis': {
'features': [batch, 30, 512], # Core vision features
'spatial_3d': [batch, 30, 6], # 3D spatial understanding
'scene': [batch, 30, 1000], # Scene classification
'objects': [batch, 30, 80], # Object detection
'motion': [batch, 30, 4] # Motion analysis
},
'audio_analysis': {
'features': [batch, 30, 1024], # Core audio features
'spatial': [batch, 30, 4], # Spatial audio
'emotion': [batch, 30, 7], # Emotion classification
'speaker': [batch, 30, 256], # Speaker characteristics
'content': [batch, 30, 128] # Content analysis
},
'reasoning': [batch, 30, 1024], # Fused reasoning output
'timestamp': float, # Processing timestamp
'rl_action': dict # Reinforcement learning actions
}
Performance
- Inference Time: ~17.4s per sequence (CPU)
- Throughput: ~0.06 sequences/second (CPU)
- Memory Usage: ~191M parameters
- Input Resolution: 224×224 images, 80-bin mel spectrograms
- Sequence Length: Fixed at 30 frames
Note: GPU inference will be significantly faster
Usage
Basic Inference
import torch
import json
from pathlib import Path
# Load model configuration
config_path = "Qybera/LisaV3.0/config.json"
with open(config_path, 'r') as f:
config = json.load(f)
# Import and create model (requires lisa_model.py)
from lisa_model import create_lisa_model
model_config = {
'model_config': {
'vision_channels': 5, # Multispectral input
'audio_channels': 1,
'vision_hidden': 512,
'audio_hidden': 512,
'fused_dim': 1024,
'voice_hidden': 512,
'vision_layers': 4,
'audio_layers': 4,
'reasoning_layers': 8,
'mel_bins': 80,
'max_memory': 50
},
'data_config': {
'frame_size': [224, 224],
'seq_len': 30,
'n_mels': 80
}
}
# Create and load model
model, device = create_lisa_model(model_config)
# Load trained weights
state_dict = torch.load("Qybera/LisaV3.0/pytorch_model.bin", map_location=device)
model.load_state_dict(state_dict)
model.eval()
# Prepare inputs (must be exactly sequence length 30)
vision_input = torch.randn(1, 30, 5, 224, 224).to(device) # 5-channel multispectral
audio_input = torch.randn(1, 30, 1, 80, 200).to(device) # Mel spectrograms
# Generate comprehensive analysis
with torch.no_grad():
output = model(vision_input, audio_input)
# Access different analysis components
vision_features = output['vision_analysis']['features'] # [1, 30, 512]
audio_emotions = output['audio_analysis']['emotion'] # [1, 30, 7]
reasoning_output = output['reasoning'] # [1, 30, 1024]
print(f"Vision features: {vision_features.shape}")
print(f"Detected emotions: {audio_emotions.shape}")
print(f"Reasoning output: {reasoning_output.shape}")
Batch Processing
# Process multiple sequences
batch_size = 2
vision_batch = torch.randn(batch_size, 30, 5, 224, 224).to(device)
audio_batch = torch.randn(batch_size, 30, 1, 80, 200).to(device)
with torch.no_grad():
batch_output = model(vision_batch, audio_batch)
print(f"Batch processing: {batch_size} sequences")
print(f"Batch reasoning output: {batch_output['reasoning'].shape}")
Individual Component Access
# Access individual model components
vision_encoder = model.vision_encoder
audio_encoder = model.audio_encoder
reasoning_module = model.reasoning_module
# Use vision encoder separately
vision_analysis = vision_encoder(vision_input)
print("Vision analysis keys:", list(vision_analysis.keys()))
# Use audio encoder separately
audio_analysis = audio_encoder(audio_input)
print("Audio analysis keys:", list(audio_analysis.keys()))
Input Requirements
⚠️ Important: The model expects exactly 30 frames/steps per sequence due to memory constraints.
- Vision Input:
[batch_size, 30, 5, 224, 224]
- 5-channel multispectral images - Audio Input:
[batch_size, 30, 1, 80, 200]
- Mel spectrograms with 80 frequency bins - Batch Size: Flexible (tested up to batch_size=2)
- Sequence Length: Fixed at 30 (longer sequences will cause errors)
Training Information
- Framework: PyTorch
- Final Training Loss: 0.611
- Final Validation Loss: 0.639
- Training Epochs: 50
- Learning Rate: 2.14e-05 (with scheduling)
- Optimizer: AdamW
- Dataset: YouTube videos with multimodal processing
Limitations
- Fixed Sequence Length: Must use exactly 30 frames per sequence
- Memory Constraints: Cannot handle variable sequence lengths due to conversation memory implementation
- CPU Performance: ~17s per inference on CPU (GPU recommended for real-time use)
- Input Format: Requires specific multispectral (5-channel) vision input
Applications
- Multimodal Scene Analysis: Comprehensive understanding of visual scenes with audio context
- Emotion Recognition: Real-time emotion detection from audio input
- Content Analysis: Understanding of both visual and audio content
- Spatial Reasoning: 3D spatial understanding and object detection
- Interactive AI: Conversation memory enables contextual interactions
Citation
@model{advancedlisa2025,
title={AdvancedLISA: Multimodal Vision+Audio AI with Advanced Reasoning},
author={LISA Development Team},
year={2025},
url={https://github.com/elijahnzeli1/LISA3D}-private
}
License
Apache-2.0 License - see LICENSE file for details
Model card updated based on comprehensive testing - September 2025
- Downloads last month
- 20
Model tree for Qybera/LisaV3.0
Base model
Qybera/LisaV3